RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 13-Jul-2021 20:12:25 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/2_msa/Q9UP79_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/3_mltree/Q9UP79 --seed 2 --threads 9 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (9 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/2_msa/Q9UP79_trimmed_msa.fasta [00:00:00] Loaded alignment with 1001 taxa and 1489 sites WARNING: Sequences tr_H2R0A6_H2R0A6_PANTR_9598 and tr_A0A2R9CI31_A0A2R9CI31_PANPA_9597 are exactly identical! WARNING: Sequences tr_K7C8I8_K7C8I8_PANTR_9598 and tr_A0A2R9BJM3_A0A2R9BJM3_PANPA_9597 are exactly identical! WARNING: Sequences tr_F7ECB0_F7ECB0_MACMU_9544 and tr_A0A2K6BFE9_A0A2K6BFE9_MACNE_9545 are exactly identical! WARNING: Sequences tr_G7ME94_G7ME94_MACMU_9544 and tr_A0A2K5XKM3_A0A2K5XKM3_MANLE_9568 are exactly identical! WARNING: Sequences tr_A0A096NAB7_A0A096NAB7_PAPAN_9555 and tr_A0A0D9R9M6_A0A0D9R9M6_CHLSB_60711 are exactly identical! WARNING: Sequences tr_A0A096NAB7_A0A096NAB7_PAPAN_9555 and tr_A0A2K6A5D4_A0A2K6A5D4_MANLE_9568 are exactly identical! WARNING: Sequences tr_A0A226MN07_A0A226MN07_CALSU_9009 and tr_A0A226PI57_A0A226PI57_COLVI_9014 are exactly identical! WARNING: Sequences tr_A0A2D0SFK5_A0A2D0SFK5_ICTPU_7998 and tr_A0A2D0SGV6_A0A2D0SGV6_ICTPU_7998 are exactly identical! WARNING: Duplicate sequences found: 8 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/3_mltree/Q9UP79.raxml.reduced.phy Alignment comprises 1 partitions and 1486 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 1489 / 1486 Gaps: 31.05 % Invariant sites: 1.95 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/3_mltree/Q9UP79.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 9 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 1001 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 166 / 13280 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -1969600.334049] Initial branch length optimization [00:00:08 -1691852.211865] Model parameter optimization (eps = 10.000000) [00:00:56 -1691021.272367] AUTODETECT spr round 1 (radius: 5) [00:04:02 -1067987.080435] AUTODETECT spr round 2 (radius: 10) [00:07:40 -717908.235416] AUTODETECT spr round 3 (radius: 15) [00:11:22 -573495.744925] AUTODETECT spr round 4 (radius: 20) [00:15:14 -539648.033684] AUTODETECT spr round 5 (radius: 25) [00:20:28 -517081.482755] SPR radius for FAST iterations: 25 (autodetect) [00:20:28 -517081.482755] Model parameter optimization (eps = 3.000000) [00:20:50 -516909.683120] FAST spr round 1 (radius: 25) [00:24:01 -447131.584168] FAST spr round 2 (radius: 25) [00:26:36 -444683.764299] FAST spr round 3 (radius: 25) [00:28:58 -444394.664199] FAST spr round 4 (radius: 25) [00:31:04 -444377.719939] FAST spr round 5 (radius: 25) [00:33:05 -444377.719917] Model parameter optimization (eps = 1.000000) [00:33:25 -444362.549298] SLOW spr round 1 (radius: 5) [00:36:16 -444276.446436] SLOW spr round 2 (radius: 5) [00:39:03 -444268.226852] SLOW spr round 3 (radius: 5) [00:41:42 -444268.226702] SLOW spr round 4 (radius: 10) [00:44:23 -444268.226702] SLOW spr round 5 (radius: 15) [00:48:44 -444268.226702] SLOW spr round 6 (radius: 20) [00:56:11 -444268.226702] SLOW spr round 7 (radius: 25) [01:07:47 -444268.226702] Model parameter optimization (eps = 0.100000) [01:07:58] ML tree search #1, logLikelihood: -444268.053058 [01:07:58 -1965894.163301] Initial branch length optimization [01:08:06 -1682869.273775] Model parameter optimization (eps = 10.000000) [01:08:59 -1681979.593908] AUTODETECT spr round 1 (radius: 5) [01:12:10 -1066281.520068] AUTODETECT spr round 2 (radius: 10) [01:15:43 -736786.093754] AUTODETECT spr round 3 (radius: 15) [01:19:11 -614521.798915] AUTODETECT spr round 4 (radius: 20) [01:23:34 -553955.979718] AUTODETECT spr round 5 (radius: 25) [01:28:26 -518406.934520] SPR radius for FAST iterations: 25 (autodetect) [01:28:26 -518406.934520] Model parameter optimization (eps = 3.000000) [01:28:55 -518261.655996] FAST spr round 1 (radius: 25) [01:32:05 -449578.227351] FAST spr round 2 (radius: 25) [01:34:44 -444586.540459] FAST spr round 3 (radius: 25) [01:37:07 -444465.301056] FAST spr round 4 (radius: 25) [01:39:15 -444451.661688] FAST spr round 5 (radius: 25) [01:41:18 -444434.572495] FAST spr round 6 (radius: 25) [01:43:18 -444434.572021] Model parameter optimization (eps = 1.000000) [01:43:37 -444419.868653] SLOW spr round 1 (radius: 5) [01:46:27 -444308.947147] SLOW spr round 2 (radius: 5) [01:49:17 -444281.257672] SLOW spr round 3 (radius: 5) [01:51:59 -444269.453685] SLOW spr round 4 (radius: 5) [01:54:38 -444269.453678] SLOW spr round 5 (radius: 10) [01:57:19 -444269.453675] SLOW spr round 6 (radius: 15) [02:01:40 -444269.453673] SLOW spr round 7 (radius: 20) [02:09:09 -444269.453670] SLOW spr round 8 (radius: 25) [02:20:47 -444269.453668] Model parameter optimization (eps = 0.100000) [02:20:56] ML tree search #2, logLikelihood: -444269.296087 [02:20:56 -1971772.893019] Initial branch length optimization [02:21:07 -1685296.545311] Model parameter optimization (eps = 10.000000) [02:22:00 -1684566.568208] AUTODETECT spr round 1 (radius: 5) [02:25:11 -1080639.245749] AUTODETECT spr round 2 (radius: 10) [02:28:41 -748089.096886] AUTODETECT spr round 3 (radius: 15) [02:32:13 -599137.926895] AUTODETECT spr round 4 (radius: 20) [02:36:09 -521839.638977] AUTODETECT spr round 5 (radius: 25) [02:40:50 -512714.340422] SPR radius for FAST iterations: 25 (autodetect) [02:40:50 -512714.340422] Model parameter optimization (eps = 3.000000) [02:41:12 -512589.865634] FAST spr round 1 (radius: 25) [02:44:36 -447243.203574] FAST spr round 2 (radius: 25) [02:47:16 -444831.752330] FAST spr round 3 (radius: 25) [02:49:40 -444460.853076] FAST spr round 4 (radius: 25) [02:51:45 -444453.501973] FAST spr round 5 (radius: 25) [02:53:46 -444453.501941] Model parameter optimization (eps = 1.000000) [02:54:02 -444445.922864] SLOW spr round 1 (radius: 5) [02:57:02 -444301.540696] SLOW spr round 2 (radius: 5) [02:59:54 -444287.572202] SLOW spr round 3 (radius: 5) [03:02:39 -444270.779813] SLOW spr round 4 (radius: 5) [03:05:19 -444269.993592] SLOW spr round 5 (radius: 5) [03:07:58 -444269.993567] SLOW spr round 6 (radius: 10) [03:10:41 -444269.532453] SLOW spr round 7 (radius: 5) [03:14:01 -444266.321157] SLOW spr round 8 (radius: 5) [03:16:58 -444266.321152] SLOW spr round 9 (radius: 10) [03:19:45 -444266.321149] SLOW spr round 10 (radius: 15) [03:23:58 -444266.321145] SLOW spr round 11 (radius: 20) [03:31:27 -444266.321141] SLOW spr round 12 (radius: 25) [03:42:59 -444266.321137] Model parameter optimization (eps = 0.100000) [03:43:11] ML tree search #3, logLikelihood: -444266.191072 [03:43:11 -1964372.287240] Initial branch length optimization [03:43:19 -1680323.770993] Model parameter optimization (eps = 10.000000) [03:43:59 -1679413.571163] AUTODETECT spr round 1 (radius: 5) [03:47:01 -1062717.160732] AUTODETECT spr round 2 (radius: 10) [03:50:34 -710971.427522] AUTODETECT spr round 3 (radius: 15) [03:54:05 -574418.373487] AUTODETECT spr round 4 (radius: 20) [03:58:11 -527102.055913] AUTODETECT spr round 5 (radius: 25) [04:02:27 -514467.385164] SPR radius for FAST iterations: 25 (autodetect) [04:02:27 -514467.385164] Model parameter optimization (eps = 3.000000) [04:02:50 -514301.616853] FAST spr round 1 (radius: 25) [04:06:09 -447643.843027] FAST spr round 2 (radius: 25) [04:08:47 -444690.127867] FAST spr round 3 (radius: 25) [04:11:15 -444447.179440] FAST spr round 4 (radius: 25) [04:13:30 -444428.885294] FAST spr round 5 (radius: 25) [04:15:32 -444428.885254] Model parameter optimization (eps = 1.000000) [04:15:52 -444413.566848] SLOW spr round 1 (radius: 5) [04:18:47 -444310.996224] SLOW spr round 2 (radius: 5) [04:21:30 -444310.528962] SLOW spr round 3 (radius: 5) [04:24:10 -444310.528800] SLOW spr round 4 (radius: 10) [04:26:55 -444303.134412] SLOW spr round 5 (radius: 5) [04:30:16 -444298.637634] SLOW spr round 6 (radius: 5) [04:33:13 -444298.637616] SLOW spr round 7 (radius: 10) [04:36:01 -444298.637613] SLOW spr round 8 (radius: 15) [04:40:20 -444298.637610] SLOW spr round 9 (radius: 20) [04:47:45 -444298.637608] SLOW spr round 10 (radius: 25) [04:59:24 -444298.637605] Model parameter optimization (eps = 0.100000) [04:59:31] ML tree search #4, logLikelihood: -444298.567186 [04:59:31 -1957219.475634] Initial branch length optimization [04:59:38 -1678885.368012] Model parameter optimization (eps = 10.000000) [05:00:13 -1678089.972655] AUTODETECT spr round 1 (radius: 5) [05:03:13 -1056781.024336] AUTODETECT spr round 2 (radius: 10) [05:06:44 -756536.945151] AUTODETECT spr round 3 (radius: 15) [05:10:18 -643599.474777] AUTODETECT spr round 4 (radius: 20) [05:15:53 -562367.177203] AUTODETECT spr round 5 (radius: 25) [05:20:25 -529001.618985] SPR radius for FAST iterations: 25 (autodetect) [05:20:25 -529001.618985] Model parameter optimization (eps = 3.000000) [05:20:57 -528800.816445] FAST spr round 1 (radius: 25) [05:24:16 -449287.982087] FAST spr round 2 (radius: 25) [05:26:45 -444627.781102] FAST spr round 3 (radius: 25) [05:29:01 -444415.971531] FAST spr round 4 (radius: 25) [05:31:06 -444411.691395] FAST spr round 5 (radius: 25) [05:33:07 -444411.691381] Model parameter optimization (eps = 1.000000) [05:33:25 -444397.707493] SLOW spr round 1 (radius: 5) [05:36:17 -444291.791605] SLOW spr round 2 (radius: 5) [05:39:00 -444290.246863] SLOW spr round 3 (radius: 5) [05:41:39 -444290.246841] SLOW spr round 4 (radius: 10) [05:44:22 -444290.246839] SLOW spr round 5 (radius: 15) [05:48:46 -444290.246836] SLOW spr round 6 (radius: 20) [05:56:23 -444290.246834] SLOW spr round 7 (radius: 25) [06:08:07 -444290.246831] Model parameter optimization (eps = 0.100000) [06:08:16] ML tree search #5, logLikelihood: -444290.118754 [06:08:16 -1969607.439265] Initial branch length optimization [06:08:27 -1682020.770131] Model parameter optimization (eps = 10.000000) [06:09:09 -1681222.096612] AUTODETECT spr round 1 (radius: 5) [06:12:25 -1091522.084094] AUTODETECT spr round 2 (radius: 10) [06:15:47 -772380.058268] AUTODETECT spr round 3 (radius: 15) [06:19:29 -629182.093088] AUTODETECT spr round 4 (radius: 20) [06:25:38 -574659.816286] AUTODETECT spr round 5 (radius: 25) [06:31:22 -553866.326166] SPR radius for FAST iterations: 25 (autodetect) [06:31:22 -553866.326166] Model parameter optimization (eps = 3.000000) [06:31:47 -553748.439100] FAST spr round 1 (radius: 25) [06:35:21 -452317.685320] FAST spr round 2 (radius: 25) [06:38:09 -444691.163185] FAST spr round 3 (radius: 25) [06:40:33 -444429.723604] FAST spr round 4 (radius: 25) [06:42:46 -444388.966302] FAST spr round 5 (radius: 25) [06:44:49 -444383.827583] FAST spr round 6 (radius: 25) [06:46:50 -444383.827569] Model parameter optimization (eps = 1.000000) [06:47:09 -444364.556393] SLOW spr round 1 (radius: 5) [06:50:01 -444266.859290] SLOW spr round 2 (radius: 5) [06:52:48 -444256.636095] SLOW spr round 3 (radius: 5) [06:55:28 -444256.635988] SLOW spr round 4 (radius: 10) [06:58:10 -444256.303369] SLOW spr round 5 (radius: 5) [07:01:32 -444253.419778] SLOW spr round 6 (radius: 5) [07:04:30 -444253.419778] SLOW spr round 7 (radius: 10) [07:07:17 -444253.419778] SLOW spr round 8 (radius: 15) [07:11:32 -444253.419778] SLOW spr round 9 (radius: 20) [07:19:01 -444253.419778] SLOW spr round 10 (radius: 25) [07:30:35 -444253.419778] Model parameter optimization (eps = 0.100000) [07:30:46] ML tree search #6, logLikelihood: -444253.365843 [07:30:47 -1962011.496707] Initial branch length optimization [07:30:53 -1672975.077154] Model parameter optimization (eps = 10.000000) [07:31:39 -1672085.188807] AUTODETECT spr round 1 (radius: 5) [07:34:42 -1096226.415007] AUTODETECT spr round 2 (radius: 10) [07:38:10 -747689.479726] AUTODETECT spr round 3 (radius: 15) [07:41:46 -611984.027186] AUTODETECT spr round 4 (radius: 20) [07:46:54 -543036.664335] AUTODETECT spr round 5 (radius: 25) [07:51:28 -518008.036041] SPR radius for FAST iterations: 25 (autodetect) [07:51:28 -518008.036041] Model parameter optimization (eps = 3.000000) [07:51:50 -517832.479501] FAST spr round 1 (radius: 25) [07:55:07 -448862.440622] FAST spr round 2 (radius: 25) [07:57:45 -444684.565268] FAST spr round 3 (radius: 25) [08:00:08 -444409.381342] FAST spr round 4 (radius: 25) [08:02:15 -444383.068515] FAST spr round 5 (radius: 25) [08:04:22 -444377.122929] FAST spr round 6 (radius: 25) [08:06:23 -444375.778654] FAST spr round 7 (radius: 25) [08:08:23 -444375.778560] Model parameter optimization (eps = 1.000000) [08:08:42 -444358.184997] SLOW spr round 1 (radius: 5) [08:11:34 -444282.790129] SLOW spr round 2 (radius: 5) [08:14:16 -444277.941452] SLOW spr round 3 (radius: 5) [08:16:55 -444277.941432] SLOW spr round 4 (radius: 10) [08:19:37 -444277.860001] SLOW spr round 5 (radius: 15) [08:23:56 -444277.859970] SLOW spr round 6 (radius: 20) [08:31:19 -444277.859967] SLOW spr round 7 (radius: 25) [08:43:00 -444277.859964] Model parameter optimization (eps = 0.100000) [08:43:13] ML tree search #7, logLikelihood: -444277.653163 [08:43:13 -1978179.092962] Initial branch length optimization [08:43:20 -1696669.233215] Model parameter optimization (eps = 10.000000) [08:43:58 -1695860.397855] AUTODETECT spr round 1 (radius: 5) [08:46:58 -1086412.118018] AUTODETECT spr round 2 (radius: 10) [08:50:19 -752436.246899] AUTODETECT spr round 3 (radius: 15) [08:53:58 -616626.015968] AUTODETECT spr round 4 (radius: 20) [08:59:04 -549447.290026] AUTODETECT spr round 5 (radius: 25) [09:03:58 -519149.970571] SPR radius for FAST iterations: 25 (autodetect) [09:03:58 -519149.970571] Model parameter optimization (eps = 3.000000) [09:04:20 -518973.757713] FAST spr round 1 (radius: 25) [09:07:45 -448246.189762] FAST spr round 2 (radius: 25) [09:10:29 -444549.941639] FAST spr round 3 (radius: 25) [09:12:51 -444422.429981] FAST spr round 4 (radius: 25) [09:14:58 -444407.679735] FAST spr round 5 (radius: 25) [09:17:01 -444403.758381] FAST spr round 6 (radius: 25) [09:19:01 -444403.758162] Model parameter optimization (eps = 1.000000) [09:19:19 -444394.325297] SLOW spr round 1 (radius: 5) [09:22:11 -444282.412855] SLOW spr round 2 (radius: 5) [09:24:59 -444271.984234] SLOW spr round 3 (radius: 5) [09:27:42 -444269.369665] SLOW spr round 4 (radius: 5) [09:30:22 -444269.369656] SLOW spr round 5 (radius: 10) [09:33:04 -444269.151507] SLOW spr round 6 (radius: 5) [09:36:26 -444265.938400] SLOW spr round 7 (radius: 5) [09:39:24 -444265.938397] SLOW spr round 8 (radius: 10) [09:42:10 -444265.938395] SLOW spr round 9 (radius: 15) [09:46:26 -444265.938392] SLOW spr round 10 (radius: 20) [09:53:58 -444265.938389] SLOW spr round 11 (radius: 25) [10:05:33 -444265.938387] Model parameter optimization (eps = 0.100000) [10:05:40] ML tree search #8, logLikelihood: -444265.883907 [10:05:40 -1979889.946316] Initial branch length optimization [10:05:53 -1698810.409026] Model parameter optimization (eps = 10.000000) [10:06:37 -1697973.251444] AUTODETECT spr round 1 (radius: 5) [10:09:41 -1071353.229131] AUTODETECT spr round 2 (radius: 10) [10:13:12 -722546.164318] AUTODETECT spr round 3 (radius: 15) [10:16:59 -551705.576591] AUTODETECT spr round 4 (radius: 20) [10:20:51 -518275.734111] AUTODETECT spr round 5 (radius: 25) [10:25:31 -508040.629843] SPR radius for FAST iterations: 25 (autodetect) [10:25:31 -508040.629843] Model parameter optimization (eps = 3.000000) [10:25:55 -507887.282409] FAST spr round 1 (radius: 25) [10:29:02 -447078.479172] FAST spr round 2 (radius: 25) [10:31:39 -444556.510836] FAST spr round 3 (radius: 25) [10:33:59 -444429.959012] FAST spr round 4 (radius: 25) [10:36:09 -444402.576753] FAST spr round 5 (radius: 25) [10:38:11 -444399.757591] FAST spr round 6 (radius: 25) [10:40:11 -444399.757109] Model parameter optimization (eps = 1.000000) [10:40:31 -444392.045775] SLOW spr round 1 (radius: 5) [10:43:24 -444281.115825] SLOW spr round 2 (radius: 5) [10:46:09 -444274.464189] SLOW spr round 3 (radius: 5) [10:48:50 -444271.833195] SLOW spr round 4 (radius: 5) [10:51:29 -444271.833181] SLOW spr round 5 (radius: 10) [10:54:11 -444271.833176] SLOW spr round 6 (radius: 15) [10:58:36 -444271.833172] SLOW spr round 7 (radius: 20) [11:06:19 -444271.833168] SLOW spr round 8 (radius: 25) [11:18:14 -444271.833164] Model parameter optimization (eps = 0.100000) [11:18:24] ML tree search #9, logLikelihood: -444271.557454 [11:18:24 -1973104.749439] Initial branch length optimization [11:18:33 -1693524.936276] Model parameter optimization (eps = 10.000000) [11:19:16 -1692849.278602] AUTODETECT spr round 1 (radius: 5) [11:22:22 -1058860.627870] AUTODETECT spr round 2 (radius: 10) [11:25:58 -766064.969977] AUTODETECT spr round 3 (radius: 15) [11:29:30 -614183.124345] AUTODETECT spr round 4 (radius: 20) [11:33:33 -534349.295746] AUTODETECT spr round 5 (radius: 25) [11:38:30 -516302.662884] SPR radius for FAST iterations: 25 (autodetect) [11:38:30 -516302.662884] Model parameter optimization (eps = 3.000000) [11:38:58 -516192.518609] FAST spr round 1 (radius: 25) [11:42:26 -448990.751018] FAST spr round 2 (radius: 25) [11:45:14 -444712.656866] FAST spr round 3 (radius: 25) [11:47:38 -444468.215053] FAST spr round 4 (radius: 25) [11:49:46 -444423.536220] FAST spr round 5 (radius: 25) [11:51:48 -444423.530190] Model parameter optimization (eps = 1.000000) [11:52:08 -444397.184676] SLOW spr round 1 (radius: 5) [11:55:08 -444295.775797] SLOW spr round 2 (radius: 5) [11:57:55 -444292.454489] SLOW spr round 3 (radius: 5) [12:00:36 -444292.437292] SLOW spr round 4 (radius: 10) [12:03:19 -444291.768366] SLOW spr round 5 (radius: 5) [12:06:40 -444291.768251] SLOW spr round 6 (radius: 10) [12:09:41 -444291.518087] SLOW spr round 7 (radius: 5) [12:12:58 -444288.316945] SLOW spr round 8 (radius: 5) [12:15:54 -444288.316945] SLOW spr round 9 (radius: 10) [12:18:41 -444288.316945] SLOW spr round 10 (radius: 15) [12:23:01 -444288.316945] SLOW spr round 11 (radius: 20) [12:30:38 -444288.316945] SLOW spr round 12 (radius: 25) [12:42:24 -444288.316945] Model parameter optimization (eps = 0.100000) [12:42:38] ML tree search #10, logLikelihood: -444287.086523 [12:42:38 -1973556.834262] Initial branch length optimization [12:42:45 -1689169.886852] Model parameter optimization (eps = 10.000000) [12:43:28 -1688401.917015] AUTODETECT spr round 1 (radius: 5) [12:46:33 -1075446.373893] AUTODETECT spr round 2 (radius: 10) [12:50:16 -714377.643597] AUTODETECT spr round 3 (radius: 15) [12:53:58 -571955.139421] AUTODETECT spr round 4 (radius: 20) [12:57:56 -532634.343150] AUTODETECT spr round 5 (radius: 25) [13:02:34 -519008.717159] SPR radius for FAST iterations: 25 (autodetect) [13:02:34 -519008.717159] Model parameter optimization (eps = 3.000000) [13:02:57 -518840.598229] FAST spr round 1 (radius: 25) [13:06:31 -449658.150925] FAST spr round 2 (radius: 25) [13:09:13 -445071.940801] FAST spr round 3 (radius: 25) [13:11:37 -444422.882060] FAST spr round 4 (radius: 25) [13:13:43 -444405.563567] FAST spr round 5 (radius: 25) [13:15:44 -444405.562913] Model parameter optimization (eps = 1.000000) [13:16:02 -444400.006829] SLOW spr round 1 (radius: 5) [13:19:03 -444280.276894] SLOW spr round 2 (radius: 5) [13:21:47 -444276.720483] SLOW spr round 3 (radius: 5) [13:24:27 -444276.720463] SLOW spr round 4 (radius: 10) [13:27:09 -444276.495204] SLOW spr round 5 (radius: 5) [13:30:30 -444273.288521] SLOW spr round 6 (radius: 5) [13:33:28 -444273.288481] SLOW spr round 7 (radius: 10) [13:36:15 -444273.288478] SLOW spr round 8 (radius: 15) [13:40:31 -444273.288475] SLOW spr round 9 (radius: 20) [13:48:14 -444273.288472] SLOW spr round 10 (radius: 25) [14:00:22 -444273.288470] Model parameter optimization (eps = 0.100000) [14:00:39] ML tree search #11, logLikelihood: -444272.846759 [14:00:39 -1971354.569017] Initial branch length optimization [14:00:49 -1685905.355470] Model parameter optimization (eps = 10.000000) [14:01:37 -1685141.595535] AUTODETECT spr round 1 (radius: 5) [14:04:44 -1077621.218001] AUTODETECT spr round 2 (radius: 10) [14:08:16 -742844.775810] AUTODETECT spr round 3 (radius: 15) [14:11:51 -565416.738154] AUTODETECT spr round 4 (radius: 20) [14:15:35 -519634.649187] AUTODETECT spr round 5 (radius: 25) [14:19:52 -511189.302372] SPR radius for FAST iterations: 25 (autodetect) [14:19:52 -511189.302372] Model parameter optimization (eps = 3.000000) [14:20:24 -511047.598116] FAST spr round 1 (radius: 25) [14:23:32 -449443.405003] FAST spr round 2 (radius: 25) [14:26:17 -444738.458431] FAST spr round 3 (radius: 25) [14:28:39 -444386.360858] FAST spr round 4 (radius: 25) [14:30:48 -444374.087783] FAST spr round 5 (radius: 25) [14:32:53 -444368.755276] FAST spr round 6 (radius: 25) [14:34:55 -444365.433190] FAST spr round 7 (radius: 25) [14:36:56 -444365.433168] Model parameter optimization (eps = 1.000000) [14:37:13 -444361.654573] SLOW spr round 1 (radius: 5) [14:40:05 -444282.577511] SLOW spr round 2 (radius: 5) [14:42:51 -444274.031458] SLOW spr round 3 (radius: 5) [14:45:32 -444271.921540] SLOW spr round 4 (radius: 5) [14:48:12 -444271.420034] SLOW spr round 5 (radius: 5) [14:50:51 -444271.420031] SLOW spr round 6 (radius: 10) [14:53:34 -444270.771085] SLOW spr round 7 (radius: 5) [14:56:54 -444270.771039] SLOW spr round 8 (radius: 10) [14:59:54 -444270.545310] SLOW spr round 9 (radius: 5) [15:03:11 -444267.340428] SLOW spr round 10 (radius: 5) [15:06:07 -444267.340425] SLOW spr round 11 (radius: 10) [15:08:52 -444267.340422] SLOW spr round 12 (radius: 15) [15:13:09 -444267.340420] SLOW spr round 13 (radius: 20) [15:20:36 -444267.340417] SLOW spr round 14 (radius: 25) [15:32:17 -444267.340414] Model parameter optimization (eps = 0.100000) [15:32:26] ML tree search #12, logLikelihood: -444267.212626 [15:32:26 -1962286.133174] Initial branch length optimization [15:32:38 -1679150.237875] Model parameter optimization (eps = 10.000000) [15:33:19 -1678396.971551] AUTODETECT spr round 1 (radius: 5) [15:36:33 -1079442.988828] AUTODETECT spr round 2 (radius: 10) [15:40:00 -756222.760171] AUTODETECT spr round 3 (radius: 15) [15:43:37 -616657.988631] AUTODETECT spr round 4 (radius: 20) [15:47:55 -545908.061244] AUTODETECT spr round 5 (radius: 25) [15:53:02 -517417.513719] SPR radius for FAST iterations: 25 (autodetect) [15:53:02 -517417.513719] Model parameter optimization (eps = 3.000000) [15:53:25 -517251.439858] FAST spr round 1 (radius: 25) [15:56:39 -447829.679395] FAST spr round 2 (radius: 25) [15:59:14 -444652.856850] FAST spr round 3 (radius: 25) [16:01:34 -444407.926591] FAST spr round 4 (radius: 25) [16:03:38 -444401.428624] FAST spr round 5 (radius: 25) [16:05:40 -444400.013628] FAST spr round 6 (radius: 25) [16:07:40 -444400.013037] Model parameter optimization (eps = 1.000000) [16:07:57 -444392.426669] SLOW spr round 1 (radius: 5) [16:10:54 -444278.097560] SLOW spr round 2 (radius: 5) [16:13:42 -444262.108561] SLOW spr round 3 (radius: 5) [16:16:21 -444262.108553] SLOW spr round 4 (radius: 10) [16:19:03 -444261.890319] SLOW spr round 5 (radius: 5) [16:22:24 -444258.677854] SLOW spr round 6 (radius: 5) [16:25:21 -444258.677851] SLOW spr round 7 (radius: 10) [16:28:06 -444258.677849] SLOW spr round 8 (radius: 15) [16:32:22 -444258.677846] SLOW spr round 9 (radius: 20) [16:39:52 -444258.677843] SLOW spr round 10 (radius: 25) [16:51:31 -444258.677841] Model parameter optimization (eps = 0.100000) [16:51:40] ML tree search #13, logLikelihood: -444258.466847 [16:51:40 -1965177.434507] Initial branch length optimization [16:51:47 -1687344.275372] Model parameter optimization (eps = 10.000000) [16:52:30 -1686673.106422] AUTODETECT spr round 1 (radius: 5) [16:55:33 -1033794.675615] AUTODETECT spr round 2 (radius: 10) [16:59:38 -702635.655451] AUTODETECT spr round 3 (radius: 15) [17:03:06 -620969.602341] AUTODETECT spr round 4 (radius: 20) [17:08:20 -556537.796700] AUTODETECT spr round 5 (radius: 25) [17:12:46 -532811.971666] SPR radius for FAST iterations: 25 (autodetect) [17:12:46 -532811.971666] Model parameter optimization (eps = 3.000000) [17:13:08 -532680.523037] FAST spr round 1 (radius: 25) [17:16:29 -450514.294606] FAST spr round 2 (radius: 25) [17:19:10 -444865.246322] FAST spr round 3 (radius: 25) [17:21:38 -444419.223936] FAST spr round 4 (radius: 25) [17:23:51 -444393.268485] FAST spr round 5 (radius: 25) [17:26:05 -444355.826894] FAST spr round 6 (radius: 25) [17:28:08 -444352.737070] FAST spr round 7 (radius: 25) [17:30:08 -444352.737069] Model parameter optimization (eps = 1.000000) [17:30:26 -444336.700262] SLOW spr round 1 (radius: 5) [17:33:17 -444256.672513] SLOW spr round 2 (radius: 5) [17:36:00 -444256.672245] SLOW spr round 3 (radius: 10) [17:38:44 -444256.218647] SLOW spr round 4 (radius: 5) [17:42:06 -444253.003701] SLOW spr round 5 (radius: 5) [17:45:04 -444253.003701] SLOW spr round 6 (radius: 10) [17:47:51 -444253.003701] SLOW spr round 7 (radius: 15) [17:52:06 -444253.003701] SLOW spr round 8 (radius: 20) [17:59:38 -444253.003701] SLOW spr round 9 (radius: 25) [18:11:18 -444253.003701] Model parameter optimization (eps = 0.100000) [18:11:25] ML tree search #14, logLikelihood: -444252.943673 [18:11:26 -1964384.248912] Initial branch length optimization [18:11:33 -1678850.513863] Model parameter optimization (eps = 10.000000) [18:12:23 -1678039.479396] AUTODETECT spr round 1 (radius: 5) [18:15:32 -1072589.413175] AUTODETECT spr round 2 (radius: 10) [18:19:03 -757089.661183] AUTODETECT spr round 3 (radius: 15) [18:22:23 -639699.147473] AUTODETECT spr round 4 (radius: 20) [18:28:15 -585101.787148] AUTODETECT spr round 5 (radius: 25) [18:32:36 -542988.557057] SPR radius for FAST iterations: 25 (autodetect) [18:32:36 -542988.557057] Model parameter optimization (eps = 3.000000) [18:33:01 -542811.142709] FAST spr round 1 (radius: 25) [18:36:21 -450019.831125] FAST spr round 2 (radius: 25) [18:39:08 -444600.616905] FAST spr round 3 (radius: 25) [18:41:26 -444399.843163] FAST spr round 4 (radius: 25) [18:43:35 -444390.871187] FAST spr round 5 (radius: 25) [18:45:36 -444390.871187] Model parameter optimization (eps = 1.000000) [18:45:54 -444375.977086] SLOW spr round 1 (radius: 5) [18:48:49 -444278.896686] SLOW spr round 2 (radius: 5) [18:51:34 -444265.106433] SLOW spr round 3 (radius: 5) [18:54:14 -444263.621629] SLOW spr round 4 (radius: 5) [18:56:53 -444263.621628] SLOW spr round 5 (radius: 10) [18:59:35 -444263.621628] SLOW spr round 6 (radius: 15) [19:03:56 -444263.621628] SLOW spr round 7 (radius: 20) [19:11:23 -444263.621628] SLOW spr round 8 (radius: 25) [19:23:00 -444263.621628] Model parameter optimization (eps = 0.100000) [19:23:09] ML tree search #15, logLikelihood: -444263.424567 [19:23:09 -1974807.833806] Initial branch length optimization [19:23:16 -1686966.260716] Model parameter optimization (eps = 10.000000) [19:23:57 -1686158.451714] AUTODETECT spr round 1 (radius: 5) [19:26:58 -1078631.614197] AUTODETECT spr round 2 (radius: 10) [19:30:25 -755488.540302] AUTODETECT spr round 3 (radius: 15) [19:34:00 -582642.611775] AUTODETECT spr round 4 (radius: 20) [19:37:43 -534760.169930] AUTODETECT spr round 5 (radius: 25) [19:41:53 -524042.327077] SPR radius for FAST iterations: 25 (autodetect) [19:41:53 -524042.327077] Model parameter optimization (eps = 3.000000) [19:42:17 -523860.249614] FAST spr round 1 (radius: 25) [19:45:36 -451641.505251] FAST spr round 2 (radius: 25) [19:48:11 -444648.091336] FAST spr round 3 (radius: 25) [19:50:32 -444362.960002] FAST spr round 4 (radius: 25) [19:52:42 -444348.584236] FAST spr round 5 (radius: 25) [19:54:43 -444346.718958] FAST spr round 6 (radius: 25) [19:56:43 -444346.718954] Model parameter optimization (eps = 1.000000) [19:56:57 -444344.591495] SLOW spr round 1 (radius: 5) [19:59:49 -444283.216744] SLOW spr round 2 (radius: 5) [20:02:31 -444281.580376] SLOW spr round 3 (radius: 5) [20:05:10 -444281.580341] SLOW spr round 4 (radius: 10) [20:07:52 -444279.932485] SLOW spr round 5 (radius: 5) [20:11:14 -444275.620576] SLOW spr round 6 (radius: 5) [20:14:12 -444275.156776] SLOW spr round 7 (radius: 5) [20:16:59 -444275.156761] SLOW spr round 8 (radius: 10) [20:19:42 -444275.156757] SLOW spr round 9 (radius: 15) [20:24:02 -444275.156753] SLOW spr round 10 (radius: 20) [20:31:34 -444275.156749] SLOW spr round 11 (radius: 25) [20:43:16 -444275.156745] Model parameter optimization (eps = 0.100000) [20:43:22] ML tree search #16, logLikelihood: -444275.075351 [20:43:23 -1963283.697524] Initial branch length optimization [20:43:32 -1686748.821564] Model parameter optimization (eps = 10.000000) [20:44:17 -1686024.589585] AUTODETECT spr round 1 (radius: 5) [20:47:54 -1091189.125528] AUTODETECT spr round 2 (radius: 10) [20:51:32 -742289.019191] AUTODETECT spr round 3 (radius: 15) [20:55:07 -602788.933008] AUTODETECT spr round 4 (radius: 20) [20:58:52 -529448.249982] AUTODETECT spr round 5 (radius: 25) [21:03:07 -518540.296408] SPR radius for FAST iterations: 25 (autodetect) [21:03:07 -518540.296408] Model parameter optimization (eps = 3.000000) [21:03:33 -518362.815999] FAST spr round 1 (radius: 25) [21:06:55 -447414.757876] FAST spr round 2 (radius: 25) [21:09:39 -444648.963578] FAST spr round 3 (radius: 25) [21:11:58 -444402.972807] FAST spr round 4 (radius: 25) [21:14:05 -444378.634593] FAST spr round 5 (radius: 25) [21:16:08 -444377.196347] FAST spr round 6 (radius: 25) [21:18:08 -444377.196300] Model parameter optimization (eps = 1.000000) [21:18:23 -444370.093350] SLOW spr round 1 (radius: 5) [21:21:18 -444280.747016] SLOW spr round 2 (radius: 5) [21:24:06 -444271.777555] SLOW spr round 3 (radius: 5) [21:26:48 -444267.469504] SLOW spr round 4 (radius: 5) [21:29:28 -444267.469472] SLOW spr round 5 (radius: 10) [21:32:11 -444267.469468] SLOW spr round 6 (radius: 15) [21:36:32 -444267.469464] SLOW spr round 7 (radius: 20) [21:44:08 -444267.469460] SLOW spr round 8 (radius: 25) [21:56:01 -444267.469456] Model parameter optimization (eps = 0.100000) [21:56:12] ML tree search #17, logLikelihood: -444267.439533 [21:56:12 -1966056.762069] Initial branch length optimization [21:56:19 -1684936.425599] Model parameter optimization (eps = 10.000000) [21:56:54 -1684105.698293] AUTODETECT spr round 1 (radius: 5) [22:00:01 -1087538.673441] AUTODETECT spr round 2 (radius: 10) [22:03:28 -764283.605969] AUTODETECT spr round 3 (radius: 15) [22:07:22 -616336.755187] AUTODETECT spr round 4 (radius: 20) [22:11:49 -550438.852618] AUTODETECT spr round 5 (radius: 25) [22:16:50 -521857.173554] SPR radius for FAST iterations: 25 (autodetect) [22:16:50 -521857.173554] Model parameter optimization (eps = 3.000000) [22:17:14 -521670.478785] FAST spr round 1 (radius: 25) [22:20:38 -447432.708704] FAST spr round 2 (radius: 25) [22:23:19 -444502.836164] FAST spr round 3 (radius: 25) [22:25:43 -444394.086462] FAST spr round 4 (radius: 25) [22:27:53 -444368.449098] FAST spr round 5 (radius: 25) [22:29:56 -444365.227015] FAST spr round 6 (radius: 25) [22:31:57 -444365.227007] Model parameter optimization (eps = 1.000000) [22:32:16 -444355.528250] SLOW spr round 1 (radius: 5) [22:35:12 -444274.921856] SLOW spr round 2 (radius: 5) [22:37:56 -444270.043720] SLOW spr round 3 (radius: 5) [22:40:37 -444270.043656] SLOW spr round 4 (radius: 10) [22:43:19 -444270.043652] SLOW spr round 5 (radius: 15) [22:47:38 -444270.043647] SLOW spr round 6 (radius: 20) [22:55:08 -444270.043643] SLOW spr round 7 (radius: 25) [23:06:55 -444270.043639] Model parameter optimization (eps = 0.100000) [23:07:07] ML tree search #18, logLikelihood: -444269.611133 [23:07:07 -1976115.909862] Initial branch length optimization [23:07:15 -1686851.607430] Model parameter optimization (eps = 10.000000) [23:07:51 -1685991.027020] AUTODETECT spr round 1 (radius: 5) [23:10:58 -1062867.526126] AUTODETECT spr round 2 (radius: 10) [23:14:34 -727054.426635] AUTODETECT spr round 3 (radius: 15) [23:18:03 -601292.332319] AUTODETECT spr round 4 (radius: 20) [23:22:11 -543677.220734] AUTODETECT spr round 5 (radius: 25) [23:26:54 -526601.928657] SPR radius for FAST iterations: 25 (autodetect) [23:26:54 -526601.928657] Model parameter optimization (eps = 3.000000) [23:27:22 -526477.568715] FAST spr round 1 (radius: 25) [23:30:37 -447189.877256] FAST spr round 2 (radius: 25) [23:33:17 -444610.454184] FAST spr round 3 (radius: 25) [23:35:37 -444375.286580] FAST spr round 4 (radius: 25) [23:37:45 -444364.161341] FAST spr round 5 (radius: 25) [23:39:47 -444364.161318] Model parameter optimization (eps = 1.000000) [23:39:58 -444362.509409] SLOW spr round 1 (radius: 5) [23:42:55 -444291.492248] SLOW spr round 2 (radius: 5) [23:45:38 -444291.221597] SLOW spr round 3 (radius: 5) [23:48:18 -444291.221592] SLOW spr round 4 (radius: 10) [23:51:01 -444290.552602] SLOW spr round 5 (radius: 5) [23:54:21 -444290.552499] SLOW spr round 6 (radius: 10) [23:57:22 -444290.309236] SLOW spr round 7 (radius: 5) [24:00:39 -444287.104981] SLOW spr round 8 (radius: 5) [24:03:34 -444287.104977] SLOW spr round 9 (radius: 10) [24:06:21 -444287.104973] SLOW spr round 10 (radius: 15) [24:10:38 -444287.104969] SLOW spr round 11 (radius: 20) [24:18:16 -444287.104965] SLOW spr round 12 (radius: 25) [24:30:07 -444287.104961] Model parameter optimization (eps = 0.100000) [24:30:16] ML tree search #19, logLikelihood: -444286.962031 [24:30:16 -1974142.363978] Initial branch length optimization [24:30:24 -1696856.290220] Model parameter optimization (eps = 10.000000) [24:31:04 -1695918.207401] AUTODETECT spr round 1 (radius: 5) [24:34:09 -1051827.310934] AUTODETECT spr round 2 (radius: 10) [24:37:41 -741969.801638] AUTODETECT spr round 3 (radius: 15) [24:41:14 -625056.306202] AUTODETECT spr round 4 (radius: 20) [24:45:58 -559432.698180] AUTODETECT spr round 5 (radius: 25) [24:50:18 -547729.935338] SPR radius for FAST iterations: 25 (autodetect) [24:50:18 -547729.935338] Model parameter optimization (eps = 3.000000) [24:50:42 -547590.015070] FAST spr round 1 (radius: 25) [24:54:18 -453997.854113] FAST spr round 2 (radius: 25) [24:57:04 -445020.822397] FAST spr round 3 (radius: 25) [24:59:33 -444499.229365] FAST spr round 4 (radius: 25) [25:01:58 -444449.528126] FAST spr round 5 (radius: 25) [25:04:02 -444386.606041] FAST spr round 6 (radius: 25) [25:06:01 -444386.605720] Model parameter optimization (eps = 1.000000) [25:06:19 -444369.327292] SLOW spr round 1 (radius: 5) [25:09:09 -444288.001780] SLOW spr round 2 (radius: 5) [25:11:56 -444279.809269] SLOW spr round 3 (radius: 5) [25:14:38 -444278.147487] SLOW spr round 4 (radius: 5) [25:17:17 -444278.147224] SLOW spr round 5 (radius: 10) [25:20:01 -444276.555447] SLOW spr round 6 (radius: 5) [25:23:23 -444272.208241] SLOW spr round 7 (radius: 5) [25:26:21 -444271.760333] SLOW spr round 8 (radius: 5) [25:29:08 -444271.760323] SLOW spr round 9 (radius: 10) [25:31:53 -444271.671285] SLOW spr round 10 (radius: 15) [25:36:14 -444271.671257] SLOW spr round 11 (radius: 20) [25:43:43 -444271.671257] SLOW spr round 12 (radius: 25) [25:55:19 -444271.671257] Model parameter optimization (eps = 0.100000) [25:55:28] ML tree search #20, logLikelihood: -444271.570417 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.144167,0.151714) (0.121004,0.280974) (0.369758,0.746407) (0.365071,1.830161) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -444252.943673 AIC score: 892515.887346 / AICc score: 8936575.887346 / BIC score: 903154.136712 Free parameters (model + branch lengths): 2005 WARNING: Number of free parameters (K=2005) is larger than alignment size (n=1489). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/3_mltree/Q9UP79.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/3_mltree/Q9UP79.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/3_mltree/Q9UP79.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP79/3_mltree/Q9UP79.raxml.log Analysis started: 13-Jul-2021 20:12:25 / finished: 14-Jul-2021 22:07:53 Elapsed time: 93328.231 seconds Consumed energy: 8720.134 Wh (= 44 km in an electric car, or 218 km with an e-scooter!)