RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 06-Jul-2021 21:14:14 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/2_msa/Q9UP52_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/3_mltree/Q9UP52 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/2_msa/Q9UP52_trimmed_msa.fasta [00:00:00] Loaded alignment with 952 taxa and 730 sites WARNING: Sequences tr_J3KBS7_J3KBS7_COCIM_246410 and tr_A0A0J7BCM9_A0A0J7BCM9_COCIT_404692 are exactly identical! WARNING: Sequences tr_B6QKU9_B6QKU9_TALMQ_441960 and tr_A0A093V7A8_A0A093V7A8_TALMA_1077442 are exactly identical! WARNING: Sequences tr_B2WL67_B2WL67_PYRTR_426418 and tr_A0A2W1GK06_A0A2W1GK06_9PLEO_45151 are exactly identical! WARNING: Sequences tr_B8N170_B8N170_ASPFN_332952 and tr_Q2UK33_Q2UK33_ASPOR_510516 are exactly identical! WARNING: Sequences tr_F9FU07_F9FU07_FUSOF_660025 and tr_N4TUT6_N4TUT6_FUSC1_1229664 are exactly identical! WARNING: Sequences tr_F9FU07_F9FU07_FUSOF_660025 and tr_X0CXH6_X0CXH6_FUSOX_1089458 are exactly identical! WARNING: Sequences tr_F9FU07_F9FU07_FUSOF_660025 and tr_A0A2H3SS15_A0A2H3SS15_FUSOX_5507 are exactly identical! WARNING: Sequences tr_F6UX47_F6UX47_MACMU_9544 and tr_G8F602_G8F602_MACFA_9541 are exactly identical! WARNING: Sequences tr_A0A0E0N2A7_A0A0E0N2A7_ORYRU_4529 and tr_Q5JKV3_Q5JKV3_ORYSJ_39947 are exactly identical! WARNING: Sequences tr_G2XU89_G2XU89_BOTF4_999810 and tr_M7TL31_M7TL31_BOTF1_1290391 are exactly identical! WARNING: Sequences tr_F2SQ52_F2SQ52_TRIRC_559305 and tr_A0A178EWC0_A0A178EWC0_TRIRU_5551 are exactly identical! WARNING: Sequences tr_V2YKJ5_V2YKJ5_MONRO_1381753 and tr_A0A0W0FFC5_A0A0W0FFC5_9AGAR_221103 are exactly identical! WARNING: Sequences tr_A0A0A1NFE3_A0A0A1NFE3_9FUNG_58291 and tr_A0A367K571_A0A367K571_9FUNG_86630 are exactly identical! WARNING: Sequences tr_A0A1S4BRD4_A0A1S4BRD4_TOBAC_4097 and tr_A0A1U7VR74_A0A1U7VR74_NICSY_4096 are exactly identical! WARNING: Duplicate sequences found: 14 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/3_mltree/Q9UP52.raxml.reduced.phy Alignment comprises 1 partitions and 730 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 730 / 730 Gaps: 15.97 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/3_mltree/Q9UP52.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 952 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 105 / 8400 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -1176249.683323] Initial branch length optimization [00:00:03 -991692.409700] Model parameter optimization (eps = 10.000000) [00:00:41 -989129.257407] AUTODETECT spr round 1 (radius: 5) [00:02:20 -782976.827131] AUTODETECT spr round 2 (radius: 10) [00:04:14 -600677.680980] AUTODETECT spr round 3 (radius: 15) [00:06:20 -496965.436940] AUTODETECT spr round 4 (radius: 20) [00:08:50 -463617.765442] AUTODETECT spr round 5 (radius: 25) [00:11:37 -461518.697168] SPR radius for FAST iterations: 25 (autodetect) [00:11:37 -461518.697168] Model parameter optimization (eps = 3.000000) [00:11:45 -461513.812941] FAST spr round 1 (radius: 25) [00:14:18 -410172.719151] FAST spr round 2 (radius: 25) [00:16:23 -408053.132225] FAST spr round 3 (radius: 25) [00:18:11 -407955.704665] FAST spr round 4 (radius: 25) [00:19:40 -407940.396117] FAST spr round 5 (radius: 25) [00:21:03 -407940.396008] Model parameter optimization (eps = 1.000000) [00:21:06 -407940.057947] SLOW spr round 1 (radius: 5) [00:23:05 -407826.841814] SLOW spr round 2 (radius: 5) [00:24:56 -407816.975116] SLOW spr round 3 (radius: 5) [00:26:41 -407816.975026] SLOW spr round 4 (radius: 10) [00:28:34 -407814.210384] SLOW spr round 5 (radius: 5) [00:30:53 -407792.860223] SLOW spr round 6 (radius: 5) [00:32:57 -407773.812245] SLOW spr round 7 (radius: 5) [00:34:50 -407768.601531] SLOW spr round 8 (radius: 5) [00:36:40 -407761.799343] SLOW spr round 9 (radius: 5) [00:38:26 -407761.798567] SLOW spr round 10 (radius: 10) [00:40:20 -407761.798508] SLOW spr round 11 (radius: 15) [00:43:35 -407761.798497] SLOW spr round 12 (radius: 20) [00:48:07 -407761.798495] SLOW spr round 13 (radius: 25) [00:53:43 -407761.798494] Model parameter optimization (eps = 0.100000) [00:53:46] ML tree search #1, logLikelihood: -407761.784193 [00:53:47 -1185434.579089] Initial branch length optimization [00:53:50 -998416.216159] Model parameter optimization (eps = 10.000000) [00:54:19 -995820.821869] AUTODETECT spr round 1 (radius: 5) [00:56:04 -777804.718224] AUTODETECT spr round 2 (radius: 10) [00:58:04 -581699.806584] AUTODETECT spr round 3 (radius: 15) [01:00:08 -508778.602868] AUTODETECT spr round 4 (radius: 20) [01:02:38 -465019.834280] AUTODETECT spr round 5 (radius: 25) [01:05:27 -457686.872529] SPR radius for FAST iterations: 25 (autodetect) [01:05:27 -457686.872529] Model parameter optimization (eps = 3.000000) [01:05:47 -457367.664746] FAST spr round 1 (radius: 25) [01:08:16 -410024.711086] FAST spr round 2 (radius: 25) [01:10:08 -407816.929392] FAST spr round 3 (radius: 25) [01:11:48 -407674.869261] FAST spr round 4 (radius: 25) [01:13:17 -407658.740877] FAST spr round 5 (radius: 25) [01:14:42 -407650.542702] FAST spr round 6 (radius: 25) [01:16:05 -407646.050264] FAST spr round 7 (radius: 25) [01:17:26 -407646.050252] Model parameter optimization (eps = 1.000000) [01:17:40 -407629.022966] SLOW spr round 1 (radius: 5) [01:19:36 -407534.145766] SLOW spr round 2 (radius: 5) [01:21:26 -407525.973981] SLOW spr round 3 (radius: 5) [01:23:12 -407525.634989] SLOW spr round 4 (radius: 5) [01:24:57 -407525.634175] SLOW spr round 5 (radius: 10) [01:26:51 -407519.602959] SLOW spr round 6 (radius: 5) [01:29:06 -407511.098538] SLOW spr round 7 (radius: 5) [01:31:05 -407509.195193] SLOW spr round 8 (radius: 5) [01:32:56 -407509.194705] SLOW spr round 9 (radius: 10) [01:34:49 -407509.194593] SLOW spr round 10 (radius: 15) [01:38:07 -407509.194566] SLOW spr round 11 (radius: 20) [01:42:56 -407509.194560] SLOW spr round 12 (radius: 25) [01:49:07 -407509.194558] Model parameter optimization (eps = 0.100000) [01:49:14] ML tree search #2, logLikelihood: -407508.883651 [01:49:14 -1180417.049579] Initial branch length optimization [01:49:17 -996396.559810] Model parameter optimization (eps = 10.000000) [01:49:44 -993739.278432] AUTODETECT spr round 1 (radius: 5) [01:51:28 -791021.734813] AUTODETECT spr round 2 (radius: 10) [01:53:35 -586407.249550] AUTODETECT spr round 3 (radius: 15) [01:55:50 -510830.750645] AUTODETECT spr round 4 (radius: 20) [01:58:31 -497673.142144] AUTODETECT spr round 5 (radius: 25) [02:01:51 -475915.700706] SPR radius for FAST iterations: 25 (autodetect) [02:01:51 -475915.700706] Model parameter optimization (eps = 3.000000) [02:01:58 -475905.109373] FAST spr round 1 (radius: 25) [02:04:40 -410786.632614] FAST spr round 2 (radius: 25) [02:06:39 -408062.500625] FAST spr round 3 (radius: 25) [02:08:22 -407923.349052] FAST spr round 4 (radius: 25) [02:09:48 -407922.102782] FAST spr round 5 (radius: 25) [02:11:11 -407922.100639] Model parameter optimization (eps = 1.000000) [02:11:15 -407921.788551] SLOW spr round 1 (radius: 5) [02:13:15 -407842.456135] SLOW spr round 2 (radius: 5) [02:15:06 -407835.166422] SLOW spr round 3 (radius: 5) [02:16:52 -407835.165175] SLOW spr round 4 (radius: 10) [02:18:43 -407835.164909] SLOW spr round 5 (radius: 15) [02:22:01 -407830.262591] SLOW spr round 6 (radius: 5) [02:24:20 -407830.258901] SLOW spr round 7 (radius: 10) [02:26:29 -407830.258033] SLOW spr round 8 (radius: 15) [02:29:32 -407830.257830] SLOW spr round 9 (radius: 20) [02:34:10 -407830.257783] SLOW spr round 10 (radius: 25) [02:39:56 -407830.257772] Model parameter optimization (eps = 0.100000) [02:39:59] ML tree search #3, logLikelihood: -407830.249194 [02:39:59 -1184758.528740] Initial branch length optimization [02:40:03 -998070.505605] Model parameter optimization (eps = 10.000000) [02:40:28 -995453.824786] AUTODETECT spr round 1 (radius: 5) [02:42:12 -766226.473554] AUTODETECT spr round 2 (radius: 10) [02:44:11 -587641.206633] AUTODETECT spr round 3 (radius: 15) [02:46:24 -500341.769512] AUTODETECT spr round 4 (radius: 20) [02:48:50 -469819.966825] AUTODETECT spr round 5 (radius: 25) [02:51:36 -462197.385709] SPR radius for FAST iterations: 25 (autodetect) [02:51:36 -462197.385709] Model parameter optimization (eps = 3.000000) [02:51:42 -462189.253413] FAST spr round 1 (radius: 25) [02:54:12 -409420.620267] FAST spr round 2 (radius: 25) [02:56:07 -407991.350350] FAST spr round 3 (radius: 25) [02:57:46 -407914.138378] FAST spr round 4 (radius: 25) [02:59:14 -407904.910501] FAST spr round 5 (radius: 25) [03:00:37 -407904.910012] Model parameter optimization (eps = 1.000000) [03:00:41 -407904.646938] SLOW spr round 1 (radius: 5) [03:02:44 -407810.648854] SLOW spr round 2 (radius: 5) [03:04:36 -407792.108007] SLOW spr round 3 (radius: 5) [03:06:24 -407783.798871] SLOW spr round 4 (radius: 5) [03:08:12 -407779.999436] SLOW spr round 5 (radius: 5) [03:09:57 -407779.997655] SLOW spr round 6 (radius: 10) [03:11:48 -407779.997302] SLOW spr round 7 (radius: 15) [03:15:10 -407774.780648] SLOW spr round 8 (radius: 5) [03:17:29 -407774.778241] SLOW spr round 9 (radius: 10) [03:19:38 -407774.777823] SLOW spr round 10 (radius: 15) [03:22:45 -407774.777744] SLOW spr round 11 (radius: 20) [03:27:35 -407774.777729] SLOW spr round 12 (radius: 25) [03:33:35 -407774.777726] Model parameter optimization (eps = 0.100000) [03:33:38] ML tree search #4, logLikelihood: -407774.772439 [03:33:38 -1187891.263628] Initial branch length optimization [03:33:41 -997717.500892] Model parameter optimization (eps = 10.000000) [03:34:07 -995018.682372] AUTODETECT spr round 1 (radius: 5) [03:35:51 -787176.894244] AUTODETECT spr round 2 (radius: 10) [03:37:49 -600410.708208] AUTODETECT spr round 3 (radius: 15) [03:40:01 -520710.146881] AUTODETECT spr round 4 (radius: 20) [03:42:33 -491102.305622] AUTODETECT spr round 5 (radius: 25) [03:45:44 -472569.182283] SPR radius for FAST iterations: 25 (autodetect) [03:45:44 -472569.182283] Model parameter optimization (eps = 3.000000) [03:46:00 -472142.720940] FAST spr round 1 (radius: 25) [03:48:38 -411359.396808] FAST spr round 2 (radius: 25) [03:50:33 -408196.114719] FAST spr round 3 (radius: 25) [03:52:10 -407918.496689] FAST spr round 4 (radius: 25) [03:53:44 -407716.015385] FAST spr round 5 (radius: 25) [03:55:10 -407696.039911] FAST spr round 6 (radius: 25) [03:56:32 -407694.960058] FAST spr round 7 (radius: 25) [03:57:53 -407694.954504] Model parameter optimization (eps = 1.000000) [03:58:06 -407683.648836] SLOW spr round 1 (radius: 5) [04:00:04 -407539.427239] SLOW spr round 2 (radius: 5) [04:01:57 -407515.199888] SLOW spr round 3 (radius: 5) [04:03:43 -407514.677682] SLOW spr round 4 (radius: 5) [04:05:29 -407514.677565] SLOW spr round 5 (radius: 10) [04:07:22 -407512.552633] SLOW spr round 6 (radius: 5) [04:09:37 -407512.552594] SLOW spr round 7 (radius: 10) [04:11:42 -407512.552587] SLOW spr round 8 (radius: 15) [04:14:50 -407512.552583] SLOW spr round 9 (radius: 20) [04:19:33 -407512.552581] SLOW spr round 10 (radius: 25) [04:25:18 -407512.552580] Model parameter optimization (eps = 0.100000) [04:25:23] ML tree search #5, logLikelihood: -407512.498200 [04:25:23 -1184687.227265] Initial branch length optimization [04:25:26 -999606.598411] Model parameter optimization (eps = 10.000000) [04:25:54 -996928.630615] AUTODETECT spr round 1 (radius: 5) [04:27:38 -769159.120594] AUTODETECT spr round 2 (radius: 10) [04:29:40 -575233.369218] AUTODETECT spr round 3 (radius: 15) [04:31:49 -476610.085971] AUTODETECT spr round 4 (radius: 20) [04:34:44 -452332.888887] AUTODETECT spr round 5 (radius: 25) [04:38:24 -449378.144585] SPR radius for FAST iterations: 25 (autodetect) [04:38:24 -449378.144585] Model parameter optimization (eps = 3.000000) [04:38:48 -449120.450086] FAST spr round 1 (radius: 25) [04:41:20 -409236.245594] FAST spr round 2 (radius: 25) [04:43:17 -407744.256420] FAST spr round 3 (radius: 25) [04:44:56 -407672.421767] FAST spr round 4 (radius: 25) [04:46:22 -407665.661644] FAST spr round 5 (radius: 25) [04:47:44 -407665.660338] Model parameter optimization (eps = 1.000000) [04:47:57 -407650.769166] SLOW spr round 1 (radius: 5) [04:49:57 -407538.429584] SLOW spr round 2 (radius: 5) [04:51:46 -407533.432536] SLOW spr round 3 (radius: 5) [04:53:32 -407533.430735] SLOW spr round 4 (radius: 10) [04:55:24 -407533.429922] SLOW spr round 5 (radius: 15) [04:58:44 -407526.189507] SLOW spr round 6 (radius: 5) [05:01:03 -407525.317624] SLOW spr round 7 (radius: 5) [05:03:05 -407525.317146] SLOW spr round 8 (radius: 10) [05:05:02 -407525.317050] SLOW spr round 9 (radius: 15) [05:08:15 -407525.317027] SLOW spr round 10 (radius: 20) [05:12:52 -407525.317019] SLOW spr round 11 (radius: 25) [05:18:32 -407525.317015] Model parameter optimization (eps = 0.100000) [05:18:38] ML tree search #6, logLikelihood: -407525.191359 [05:18:38 -1187347.187186] Initial branch length optimization [05:18:42 -1001381.808231] Model parameter optimization (eps = 10.000000) [05:19:14 -998782.631815] AUTODETECT spr round 1 (radius: 5) [05:21:06 -774541.779133] AUTODETECT spr round 2 (radius: 10) [05:23:14 -563459.245060] AUTODETECT spr round 3 (radius: 15) [05:25:16 -482956.738071] AUTODETECT spr round 4 (radius: 20) [05:27:35 -456117.957516] AUTODETECT spr round 5 (radius: 25) [05:30:24 -451829.419359] SPR radius for FAST iterations: 25 (autodetect) [05:30:24 -451829.419359] Model parameter optimization (eps = 3.000000) [05:30:31 -451821.204649] FAST spr round 1 (radius: 25) [05:33:04 -409896.850247] FAST spr round 2 (radius: 25) [05:35:01 -407990.719697] FAST spr round 3 (radius: 25) [05:36:43 -407900.565916] FAST spr round 4 (radius: 25) [05:38:08 -407900.565674] Model parameter optimization (eps = 1.000000) [05:38:12 -407900.343798] SLOW spr round 1 (radius: 5) [05:40:14 -407821.198060] SLOW spr round 2 (radius: 5) [05:42:08 -407811.499238] SLOW spr round 3 (radius: 5) [05:43:56 -407811.499167] SLOW spr round 4 (radius: 10) [05:45:50 -407810.668173] SLOW spr round 5 (radius: 5) [05:48:05 -407810.668163] SLOW spr round 6 (radius: 10) [05:50:11 -407810.668160] SLOW spr round 7 (radius: 15) [05:53:19 -407810.668159] SLOW spr round 8 (radius: 20) [05:58:05 -407810.668157] SLOW spr round 9 (radius: 25) [06:03:56 -407810.668156] Model parameter optimization (eps = 0.100000) [06:04:00] ML tree search #7, logLikelihood: -407810.644002 [06:04:00 -1186391.158905] Initial branch length optimization [06:04:03 -998199.243560] Model parameter optimization (eps = 10.000000) [06:04:37 -995671.237101] AUTODETECT spr round 1 (radius: 5) [06:06:20 -778296.721107] AUTODETECT spr round 2 (radius: 10) [06:08:18 -593880.619794] AUTODETECT spr round 3 (radius: 15) [06:10:29 -484042.435174] AUTODETECT spr round 4 (radius: 20) [06:13:06 -457740.627320] AUTODETECT spr round 5 (radius: 25) [06:16:18 -457059.660761] SPR radius for FAST iterations: 25 (autodetect) [06:16:18 -457059.660761] Model parameter optimization (eps = 3.000000) [06:16:35 -456664.823504] FAST spr round 1 (radius: 25) [06:18:59 -409437.016406] FAST spr round 2 (radius: 25) [06:20:51 -407835.434471] FAST spr round 3 (radius: 25) [06:22:30 -407656.298159] FAST spr round 4 (radius: 25) [06:23:54 -407646.127510] FAST spr round 5 (radius: 25) [06:25:15 -407643.959785] FAST spr round 6 (radius: 25) [06:26:35 -407643.959363] Model parameter optimization (eps = 1.000000) [06:26:47 -407624.261103] SLOW spr round 1 (radius: 5) [06:28:42 -407531.998509] SLOW spr round 2 (radius: 5) [06:30:28 -407530.350053] SLOW spr round 3 (radius: 5) [06:32:11 -407528.887635] SLOW spr round 4 (radius: 5) [06:33:53 -407528.887586] SLOW spr round 5 (radius: 10) [06:35:43 -407528.887553] SLOW spr round 6 (radius: 15) [06:38:58 -407528.887528] SLOW spr round 7 (radius: 20) [06:43:34 -407528.887506] SLOW spr round 8 (radius: 25) [06:49:13 -407528.887486] Model parameter optimization (eps = 0.100000) [06:49:17] ML tree search #8, logLikelihood: -407528.797706 [06:49:17 -1180546.566853] Initial branch length optimization [06:49:20 -998257.996488] Model parameter optimization (eps = 10.000000) [06:49:51 -995447.591649] AUTODETECT spr round 1 (radius: 5) [06:51:31 -783971.944414] AUTODETECT spr round 2 (radius: 10) [06:53:26 -586342.465029] AUTODETECT spr round 3 (radius: 15) [06:55:31 -496524.300577] AUTODETECT spr round 4 (radius: 20) [06:58:26 -464988.078520] AUTODETECT spr round 5 (radius: 25) [07:01:53 -453937.513930] SPR radius for FAST iterations: 25 (autodetect) [07:01:53 -453937.513930] Model parameter optimization (eps = 3.000000) [07:02:00 -453931.501278] FAST spr round 1 (radius: 25) [07:04:38 -409372.191038] FAST spr round 2 (radius: 25) [07:06:40 -407971.917530] FAST spr round 3 (radius: 25) [07:08:26 -407895.000006] FAST spr round 4 (radius: 25) [07:09:54 -407889.798995] FAST spr round 5 (radius: 25) [07:11:18 -407889.797945] Model parameter optimization (eps = 1.000000) [07:11:21 -407889.593833] SLOW spr round 1 (radius: 5) [07:13:18 -407791.957093] SLOW spr round 2 (radius: 5) [07:15:13 -407785.803387] SLOW spr round 3 (radius: 5) [07:17:01 -407781.247491] SLOW spr round 4 (radius: 5) [07:18:38 -407779.849606] SLOW spr round 5 (radius: 5) [07:20:15 -407778.999881] SLOW spr round 6 (radius: 5) [07:21:59 -407778.999844] SLOW spr round 7 (radius: 10) [07:23:52 -407773.646658] SLOW spr round 8 (radius: 5) [07:26:06 -407773.240304] SLOW spr round 9 (radius: 5) [07:28:04 -407773.239991] SLOW spr round 10 (radius: 10) [07:30:01 -407773.239985] SLOW spr round 11 (radius: 15) [07:33:13 -407773.239984] SLOW spr round 12 (radius: 20) [07:37:58 -407773.239982] SLOW spr round 13 (radius: 25) [07:43:53 -407773.239981] Model parameter optimization (eps = 0.100000) [07:43:56] ML tree search #9, logLikelihood: -407773.218083 [07:43:56 -1187916.139935] Initial branch length optimization [07:44:00 -1001780.639328] Model parameter optimization (eps = 10.000000) [07:44:38 -999080.480239] AUTODETECT spr round 1 (radius: 5) [07:46:20 -776262.597920] AUTODETECT spr round 2 (radius: 10) [07:48:21 -572873.484019] AUTODETECT spr round 3 (radius: 15) [07:50:34 -479609.537589] AUTODETECT spr round 4 (radius: 20) [07:53:10 -464621.037671] AUTODETECT spr round 5 (radius: 25) [07:56:03 -458278.159504] SPR radius for FAST iterations: 25 (autodetect) [07:56:03 -458278.159504] Model parameter optimization (eps = 3.000000) [07:56:10 -458272.436061] FAST spr round 1 (radius: 25) [07:58:37 -410899.149640] FAST spr round 2 (radius: 25) [08:00:33 -408035.826295] FAST spr round 3 (radius: 25) [08:02:15 -407966.604876] FAST spr round 4 (radius: 25) [08:03:40 -407955.873385] FAST spr round 5 (radius: 25) [08:05:00 -407955.872664] Model parameter optimization (eps = 1.000000) [08:05:05 -407955.843186] SLOW spr round 1 (radius: 5) [08:07:02 -407852.140385] SLOW spr round 2 (radius: 5) [08:08:51 -407830.355770] SLOW spr round 3 (radius: 5) [08:10:37 -407824.750818] SLOW spr round 4 (radius: 5) [08:12:20 -407824.065195] SLOW spr round 5 (radius: 5) [08:14:03 -407824.065142] SLOW spr round 6 (radius: 10) [08:15:54 -407823.896810] SLOW spr round 7 (radius: 5) [08:18:08 -407811.279478] SLOW spr round 8 (radius: 5) [08:20:08 -407807.772791] SLOW spr round 9 (radius: 5) [08:21:58 -407806.752742] SLOW spr round 10 (radius: 5) [08:23:43 -407806.752596] SLOW spr round 11 (radius: 10) [08:25:34 -407806.752568] SLOW spr round 12 (radius: 15) [08:28:53 -407801.493743] SLOW spr round 13 (radius: 5) [08:31:10 -407801.491122] SLOW spr round 14 (radius: 10) [08:33:18 -407801.490670] SLOW spr round 15 (radius: 15) [08:36:22 -407801.490584] SLOW spr round 16 (radius: 20) [08:41:03 -407801.490567] SLOW spr round 17 (radius: 25) [08:47:05 -407801.490563] Model parameter optimization (eps = 0.100000) [08:47:08] ML tree search #10, logLikelihood: -407801.467326 [08:47:08 -1179541.044458] Initial branch length optimization [08:47:10 -996471.302281] Model parameter optimization (eps = 10.000000) [08:47:35 -993880.172098] AUTODETECT spr round 1 (radius: 5) [08:49:19 -769889.274511] AUTODETECT spr round 2 (radius: 10) [08:51:15 -584835.102689] AUTODETECT spr round 3 (radius: 15) [08:53:28 -484132.523275] AUTODETECT spr round 4 (radius: 20) [08:55:49 -465154.210920] AUTODETECT spr round 5 (radius: 25) [08:58:36 -462344.625039] SPR radius for FAST iterations: 25 (autodetect) [08:58:36 -462344.625039] Model parameter optimization (eps = 3.000000) [08:58:52 -461973.860797] FAST spr round 1 (radius: 25) [09:01:24 -409864.921829] FAST spr round 2 (radius: 25) [09:03:18 -407875.901525] FAST spr round 3 (radius: 25) [09:04:57 -407686.766577] FAST spr round 4 (radius: 25) [09:06:24 -407671.021537] FAST spr round 5 (radius: 25) [09:07:46 -407671.021307] Model parameter optimization (eps = 1.000000) [09:08:02 -407646.999103] SLOW spr round 1 (radius: 5) [09:09:57 -407531.032355] SLOW spr round 2 (radius: 5) [09:11:49 -407522.512566] SLOW spr round 3 (radius: 5) [09:13:41 -407522.512444] SLOW spr round 4 (radius: 10) [09:15:44 -407522.097034] SLOW spr round 5 (radius: 5) [09:18:00 -407521.285557] SLOW spr round 6 (radius: 5) [09:19:58 -407521.284763] SLOW spr round 7 (radius: 10) [09:21:56 -407521.284695] SLOW spr round 8 (radius: 15) [09:25:07 -407521.284688] SLOW spr round 9 (radius: 20) [09:29:51 -407521.284687] SLOW spr round 10 (radius: 25) [09:35:54 -407521.284687] Model parameter optimization (eps = 0.100000) [09:36:01] ML tree search #11, logLikelihood: -407520.952160 [09:36:01 -1185116.171721] Initial branch length optimization [09:36:04 -998796.135633] Model parameter optimization (eps = 10.000000) [09:36:31 -996132.441657] AUTODETECT spr round 1 (radius: 5) [09:38:12 -778686.437447] AUTODETECT spr round 2 (radius: 10) [09:40:07 -593676.708228] AUTODETECT spr round 3 (radius: 15) [09:42:19 -530711.444685] AUTODETECT spr round 4 (radius: 20) [09:44:56 -487181.611532] AUTODETECT spr round 5 (radius: 25) [09:48:03 -479675.414798] SPR radius for FAST iterations: 25 (autodetect) [09:48:03 -479675.414798] Model parameter optimization (eps = 3.000000) [09:48:10 -479668.652103] FAST spr round 1 (radius: 25) [09:50:52 -410639.770117] FAST spr round 2 (radius: 25) [09:52:51 -408089.653667] FAST spr round 3 (radius: 25) [09:54:34 -407984.634946] FAST spr round 4 (radius: 25) [09:55:58 -407984.634445] Model parameter optimization (eps = 1.000000) [09:56:02 -407984.526240] SLOW spr round 1 (radius: 5) [09:58:05 -407861.729335] SLOW spr round 2 (radius: 5) [09:59:57 -407853.035448] SLOW spr round 3 (radius: 5) [10:01:44 -407846.463108] SLOW spr round 4 (radius: 5) [10:03:28 -407846.462769] SLOW spr round 5 (radius: 10) [10:05:18 -407846.462666] SLOW spr round 6 (radius: 15) [10:08:32 -407841.185210] SLOW spr round 7 (radius: 5) [10:10:49 -407841.181102] SLOW spr round 8 (radius: 10) [10:12:56 -407841.180179] SLOW spr round 9 (radius: 15) [10:16:01 -407841.179971] SLOW spr round 10 (radius: 20) [10:20:42 -407841.179923] SLOW spr round 11 (radius: 25) [10:26:21 -407841.179912] Model parameter optimization (eps = 0.100000) [10:26:24] ML tree search #12, logLikelihood: -407841.125240 [10:26:24 -1176890.245439] Initial branch length optimization [10:26:27 -995469.690862] Model parameter optimization (eps = 10.000000) [10:26:58 -992815.756381] AUTODETECT spr round 1 (radius: 5) [10:28:41 -778598.319659] AUTODETECT spr round 2 (radius: 10) [10:30:41 -574654.105977] AUTODETECT spr round 3 (radius: 15) [10:32:44 -490805.207027] AUTODETECT spr round 4 (radius: 20) [10:35:07 -465736.860797] AUTODETECT spr round 5 (radius: 25) [10:37:48 -458567.299273] SPR radius for FAST iterations: 25 (autodetect) [10:37:48 -458567.299273] Model parameter optimization (eps = 3.000000) [10:38:11 -458304.413973] FAST spr round 1 (radius: 25) [10:40:37 -409153.359135] FAST spr round 2 (radius: 25) [10:42:30 -407742.562344] FAST spr round 3 (radius: 25) [10:44:10 -407666.866907] FAST spr round 4 (radius: 25) [10:45:36 -407666.852269] Model parameter optimization (eps = 1.000000) [10:45:50 -407653.781579] SLOW spr round 1 (radius: 5) [10:48:03 -407552.833312] SLOW spr round 2 (radius: 5) [10:49:59 -407544.089965] SLOW spr round 3 (radius: 5) [10:51:46 -407539.678560] SLOW spr round 4 (radius: 5) [10:53:30 -407538.903532] SLOW spr round 5 (radius: 5) [10:55:14 -407538.903450] SLOW spr round 6 (radius: 10) [10:57:06 -407538.903448] SLOW spr round 7 (radius: 15) [11:00:25 -407538.903447] SLOW spr round 8 (radius: 20) [11:05:00 -407538.903446] SLOW spr round 9 (radius: 25) [11:10:43 -407538.903446] Model parameter optimization (eps = 0.100000) [11:10:49] ML tree search #13, logLikelihood: -407538.699076 [11:10:49 -1189534.016969] Initial branch length optimization [11:10:52 -1001324.023610] Model parameter optimization (eps = 10.000000) [11:11:21 -998703.890601] AUTODETECT spr round 1 (radius: 5) [11:13:05 -773166.325078] AUTODETECT spr round 2 (radius: 10) [11:15:04 -590569.803520] AUTODETECT spr round 3 (radius: 15) [11:17:10 -487064.388006] AUTODETECT spr round 4 (radius: 20) [11:19:20 -463202.631116] AUTODETECT spr round 5 (radius: 25) [11:21:55 -456636.837990] SPR radius for FAST iterations: 25 (autodetect) [11:21:55 -456636.837990] Model parameter optimization (eps = 3.000000) [11:22:14 -456243.526072] FAST spr round 1 (radius: 25) [11:24:37 -409087.782933] FAST spr round 2 (radius: 25) [11:26:34 -407780.433020] FAST spr round 3 (radius: 25) [11:28:16 -407698.382949] FAST spr round 4 (radius: 25) [11:29:41 -407691.100486] FAST spr round 5 (radius: 25) [11:31:03 -407691.098506] Model parameter optimization (eps = 1.000000) [11:31:16 -407661.867102] SLOW spr round 1 (radius: 5) [11:33:15 -407551.258249] SLOW spr round 2 (radius: 5) [11:35:06 -407540.288548] SLOW spr round 3 (radius: 5) [11:36:52 -407536.289425] SLOW spr round 4 (radius: 5) [11:38:39 -407529.883770] SLOW spr round 5 (radius: 5) [11:40:23 -407528.076843] SLOW spr round 6 (radius: 5) [11:42:06 -407527.477529] SLOW spr round 7 (radius: 5) [11:43:50 -407527.477512] SLOW spr round 8 (radius: 10) [11:45:41 -407527.477509] SLOW spr round 9 (radius: 15) [11:49:00 -407527.477508] SLOW spr round 10 (radius: 20) [11:53:48 -407527.477507] SLOW spr round 11 (radius: 25) [11:59:53 -407527.477506] Model parameter optimization (eps = 0.100000) [12:00:01] ML tree search #14, logLikelihood: -407527.160312 [12:00:01 -1185935.637382] Initial branch length optimization [12:00:04 -1001499.588400] Model parameter optimization (eps = 10.000000) [12:00:32 -998756.319552] AUTODETECT spr round 1 (radius: 5) [12:02:18 -771884.491028] AUTODETECT spr round 2 (radius: 10) [12:04:17 -582628.869356] AUTODETECT spr round 3 (radius: 15) [12:06:32 -503433.150463] AUTODETECT spr round 4 (radius: 20) [12:09:20 -463818.813980] AUTODETECT spr round 5 (radius: 25) [12:12:46 -460055.584381] SPR radius for FAST iterations: 25 (autodetect) [12:12:46 -460055.584381] Model parameter optimization (eps = 3.000000) [12:12:53 -460049.502226] FAST spr round 1 (radius: 25) [12:15:28 -410055.548793] FAST spr round 2 (radius: 25) [12:17:23 -408019.540102] FAST spr round 3 (radius: 25) [12:19:04 -407894.565573] FAST spr round 4 (radius: 25) [12:20:32 -407868.102629] FAST spr round 5 (radius: 25) [12:22:04 -407865.637175] FAST spr round 6 (radius: 25) [12:23:29 -407865.637150] Model parameter optimization (eps = 1.000000) [12:23:43 -407621.600203] SLOW spr round 1 (radius: 5) [12:25:40 -407535.862111] SLOW spr round 2 (radius: 5) [12:27:27 -407532.966342] SLOW spr round 3 (radius: 5) [12:29:13 -407532.965866] SLOW spr round 4 (radius: 10) [12:31:07 -407532.965784] SLOW spr round 5 (radius: 15) [12:34:32 -407532.965769] SLOW spr round 6 (radius: 20) [12:39:19 -407532.965765] SLOW spr round 7 (radius: 25) [12:45:24 -407532.965764] Model parameter optimization (eps = 0.100000) [12:45:31] ML tree search #15, logLikelihood: -407532.650789 [12:45:31 -1189480.532137] Initial branch length optimization [12:45:35 -1001740.710800] Model parameter optimization (eps = 10.000000) [12:46:06 -999022.538775] AUTODETECT spr round 1 (radius: 5) [12:47:50 -780772.252464] AUTODETECT spr round 2 (radius: 10) [12:49:49 -585495.886602] AUTODETECT spr round 3 (radius: 15) [12:51:59 -516115.114755] AUTODETECT spr round 4 (radius: 20) [12:54:38 -482074.544764] AUTODETECT spr round 5 (radius: 25) [12:57:37 -472727.935968] SPR radius for FAST iterations: 25 (autodetect) [12:57:37 -472727.935968] Model parameter optimization (eps = 3.000000) [12:57:52 -472343.049439] FAST spr round 1 (radius: 25) [13:00:22 -410575.196511] FAST spr round 2 (radius: 25) [13:02:16 -407814.630975] FAST spr round 3 (radius: 25) [13:03:55 -407694.534232] FAST spr round 4 (radius: 25) [13:05:23 -407679.673901] FAST spr round 5 (radius: 25) [13:06:46 -407676.716379] FAST spr round 6 (radius: 25) [13:08:07 -407676.715380] Model parameter optimization (eps = 1.000000) [13:08:19 -407671.161336] SLOW spr round 1 (radius: 5) [13:10:15 -407549.244267] SLOW spr round 2 (radius: 5) [13:12:06 -407534.573289] SLOW spr round 3 (radius: 5) [13:13:53 -407529.500327] SLOW spr round 4 (radius: 5) [13:15:38 -407529.500010] SLOW spr round 5 (radius: 10) [13:17:30 -407528.876802] SLOW spr round 6 (radius: 5) [13:19:45 -407528.086573] SLOW spr round 7 (radius: 5) [13:21:44 -407527.044975] SLOW spr round 8 (radius: 5) [13:23:34 -407527.042006] SLOW spr round 9 (radius: 10) [13:25:27 -407527.041528] SLOW spr round 10 (radius: 15) [13:28:48 -407519.566771] SLOW spr round 11 (radius: 5) [13:31:06 -407519.560607] SLOW spr round 12 (radius: 10) [13:33:15 -407519.559329] SLOW spr round 13 (radius: 15) [13:36:23 -407519.559074] SLOW spr round 14 (radius: 20) [13:41:08 -407519.559023] SLOW spr round 15 (radius: 25) [13:46:51 -407519.559013] Model parameter optimization (eps = 0.100000) [13:46:59] ML tree search #16, logLikelihood: -407516.838992 [13:46:59 -1189729.648331] Initial branch length optimization [13:47:03 -1001310.599548] Model parameter optimization (eps = 10.000000) [13:47:29 -998638.134134] AUTODETECT spr round 1 (radius: 5) [13:49:14 -778707.704587] AUTODETECT spr round 2 (radius: 10) [13:51:11 -588480.222357] AUTODETECT spr round 3 (radius: 15) [13:53:19 -501701.609775] AUTODETECT spr round 4 (radius: 20) [13:55:47 -481930.196224] AUTODETECT spr round 5 (radius: 25) [13:58:25 -469015.720190] SPR radius for FAST iterations: 25 (autodetect) [13:58:25 -469015.720190] Model parameter optimization (eps = 3.000000) [13:58:47 -468649.479577] FAST spr round 1 (radius: 25) [14:01:27 -410930.933430] FAST spr round 2 (radius: 25) [14:03:26 -407802.253037] FAST spr round 3 (radius: 25) [14:05:10 -407652.804916] FAST spr round 4 (radius: 25) [14:06:36 -407651.776726] FAST spr round 5 (radius: 25) [14:07:58 -407651.776699] Model parameter optimization (eps = 1.000000) [14:08:06 -407651.737915] SLOW spr round 1 (radius: 5) [14:10:08 -407571.240593] SLOW spr round 2 (radius: 5) [14:12:06 -407555.750752] SLOW spr round 3 (radius: 5) [14:13:52 -407554.780653] SLOW spr round 4 (radius: 5) [14:15:37 -407554.779888] SLOW spr round 5 (radius: 10) [14:17:28 -407554.779772] SLOW spr round 6 (radius: 15) [14:20:44 -407554.779749] SLOW spr round 7 (radius: 20) [14:25:13 -407554.779744] SLOW spr round 8 (radius: 25) [14:30:53 -407554.779742] Model parameter optimization (eps = 0.100000) [14:30:56] ML tree search #17, logLikelihood: -407554.774670 [14:30:56 -1181393.310003] Initial branch length optimization [14:30:59 -996441.093749] Model parameter optimization (eps = 10.000000) [14:31:28 -993852.199977] AUTODETECT spr round 1 (radius: 5) [14:33:13 -784341.138918] AUTODETECT spr round 2 (radius: 10) [14:35:12 -605601.013951] AUTODETECT spr round 3 (radius: 15) [14:37:27 -496345.024845] AUTODETECT spr round 4 (radius: 20) [14:39:58 -461801.089911] AUTODETECT spr round 5 (radius: 25) [14:43:13 -458579.894740] SPR radius for FAST iterations: 25 (autodetect) [14:43:13 -458579.894740] Model parameter optimization (eps = 3.000000) [14:43:20 -458573.430415] FAST spr round 1 (radius: 25) [14:45:57 -409421.636395] FAST spr round 2 (radius: 25) [14:47:53 -408021.876882] FAST spr round 3 (radius: 25) [14:49:32 -407936.161049] FAST spr round 4 (radius: 25) [14:51:00 -407924.496267] FAST spr round 5 (radius: 25) [14:52:26 -407919.262749] FAST spr round 6 (radius: 25) [14:53:47 -407919.262327] Model parameter optimization (eps = 1.000000) [14:54:01 -407654.682060] SLOW spr round 1 (radius: 5) [14:55:58 -407521.976944] SLOW spr round 2 (radius: 5) [14:57:46 -407516.844127] SLOW spr round 3 (radius: 5) [14:59:31 -407516.843965] SLOW spr round 4 (radius: 10) [15:01:23 -407516.843954] SLOW spr round 5 (radius: 15) [15:04:45 -407516.843952] SLOW spr round 6 (radius: 20) [15:09:24 -407516.843951] SLOW spr round 7 (radius: 25) [15:15:11 -407516.843950] Model parameter optimization (eps = 0.100000) [15:15:19] ML tree search #18, logLikelihood: -407516.334763 [15:15:19 -1185827.079404] Initial branch length optimization [15:15:22 -1000340.223477] Model parameter optimization (eps = 10.000000) [15:15:50 -997717.046313] AUTODETECT spr round 1 (radius: 5) [15:17:34 -787797.990985] AUTODETECT spr round 2 (radius: 10) [15:19:31 -590907.726461] AUTODETECT spr round 3 (radius: 15) [15:21:35 -493462.261933] AUTODETECT spr round 4 (radius: 20) [15:24:00 -463773.795403] AUTODETECT spr round 5 (radius: 25) [15:27:01 -458160.170291] SPR radius for FAST iterations: 25 (autodetect) [15:27:01 -458160.170291] Model parameter optimization (eps = 3.000000) [15:27:08 -458151.710208] FAST spr round 1 (radius: 25) [15:29:40 -409887.755212] FAST spr round 2 (radius: 25) [15:31:41 -408010.833993] FAST spr round 3 (radius: 25) [15:33:26 -407919.396070] FAST spr round 4 (radius: 25) [15:34:53 -407915.121874] FAST spr round 5 (radius: 25) [15:36:16 -407915.109874] Model parameter optimization (eps = 1.000000) [15:36:20 -407914.916982] SLOW spr round 1 (radius: 5) [15:38:22 -407819.827084] SLOW spr round 2 (radius: 5) [15:40:11 -407811.781522] SLOW spr round 3 (radius: 5) [15:41:57 -407811.758393] SLOW spr round 4 (radius: 10) [15:43:50 -407811.757788] SLOW spr round 5 (radius: 15) [15:47:12 -407806.736910] SLOW spr round 6 (radius: 5) [15:49:31 -407806.730354] SLOW spr round 7 (radius: 10) [15:51:40 -407806.728863] SLOW spr round 8 (radius: 15) [15:54:47 -407806.728537] SLOW spr round 9 (radius: 20) [15:59:27 -407806.728465] SLOW spr round 10 (radius: 25) [16:05:09 -407806.728448] Model parameter optimization (eps = 0.100000) [16:05:12] ML tree search #19, logLikelihood: -407806.725314 [16:05:12 -1187650.856534] Initial branch length optimization [16:05:15 -1000323.860779] Model parameter optimization (eps = 10.000000) [16:05:53 -997687.549372] AUTODETECT spr round 1 (radius: 5) [16:07:35 -783954.684962] AUTODETECT spr round 2 (radius: 10) [16:09:30 -564564.186698] AUTODETECT spr round 3 (radius: 15) [16:11:34 -483988.651677] AUTODETECT spr round 4 (radius: 20) [16:13:54 -458186.688547] AUTODETECT spr round 5 (radius: 25) [16:16:41 -452835.774453] SPR radius for FAST iterations: 25 (autodetect) [16:16:41 -452835.774453] Model parameter optimization (eps = 3.000000) [16:16:58 -452482.868983] FAST spr round 1 (radius: 25) [16:19:23 -409619.423917] FAST spr round 2 (radius: 25) [16:21:13 -407760.395959] FAST spr round 3 (radius: 25) [16:22:47 -407656.299337] FAST spr round 4 (radius: 25) [16:24:11 -407652.582405] FAST spr round 5 (radius: 25) [16:25:31 -407651.812819] FAST spr round 6 (radius: 25) [16:26:50 -407651.812731] Model parameter optimization (eps = 1.000000) [16:27:05 -407639.051282] SLOW spr round 1 (radius: 5) [16:28:58 -407531.636886] SLOW spr round 2 (radius: 5) [16:30:45 -407525.561229] SLOW spr round 3 (radius: 5) [16:32:27 -407525.559009] SLOW spr round 4 (radius: 10) [16:34:17 -407525.558073] SLOW spr round 5 (radius: 15) [16:37:35 -407525.557581] SLOW spr round 6 (radius: 20) [16:42:14 -407525.557315] SLOW spr round 7 (radius: 25) [16:47:57 -407525.557171] Model parameter optimization (eps = 0.100000) [16:48:05] ML tree search #20, logLikelihood: -407525.172526 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.132735,0.325492) (0.209654,0.437885) (0.363515,0.873907) (0.294096,1.861001) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -407508.883651 AIC score: 818831.767303 / AICc score: 8095943.767303 / BIC score: 827590.703229 Free parameters (model + branch lengths): 1907 WARNING: Number of free parameters (K=1907) is larger than alignment size (n=730). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/3_mltree/Q9UP52.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/3_mltree/Q9UP52.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/3_mltree/Q9UP52.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q9UP52/3_mltree/Q9UP52.raxml.log Analysis started: 06-Jul-2021 21:14:14 / finished: 07-Jul-2021 14:02:20 Elapsed time: 60485.664 seconds Consumed energy: 3986.401 Wh (= 20 km in an electric car, or 100 km with an e-scooter!)