RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz, 36 cores, 251 GB RAM RAxML-NG was called at 18-Jun-2021 23:07:28 as follows: raxml-ng --msa /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/2_msa/Q9HBA0_trimmed_msa.fasta --data-type AA --model LG4X --prefix /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/3_mltree/Q9HBA0 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/2_msa/Q9HBA0_trimmed_msa.fasta [00:00:00] Loaded alignment with 569 taxa and 547 sites WARNING: Sequences tr_G3R334_G3R334_GORGO_9595 and tr_H2QBW6_H2QBW6_PANTR_9598 are exactly identical! WARNING: Sequences tr_G3R334_G3R334_GORGO_9595 and tr_A0A2R8ZD78_A0A2R8ZD78_PANPA_9597 are exactly identical! WARNING: Sequences tr_G1T2W3_G1T2W3_RABIT_9986 and sp_Q6RX08_TRPV1_RABIT_9986 are exactly identical! WARNING: Sequences tr_F1Q304_F1Q304_CANLF_9615 and sp_Q697L1_TRPV1_CANLF_9615 are exactly identical! WARNING: Sequences tr_H2QVJ2_H2QVJ2_PANTR_9598 and tr_A0A2R9AD42_A0A2R9AD42_PANPA_9597 are exactly identical! WARNING: Sequences tr_K7CF92_K7CF92_PANTR_9598 and sp_Q9HBA0_TRPV4_HUMAN_9606 are exactly identical! WARNING: Sequences tr_K7CF92_K7CF92_PANTR_9598 and tr_G7PI70_G7PI70_MACFA_9541 are exactly identical! WARNING: Sequences tr_K7CF92_K7CF92_PANTR_9598 and tr_A0A0D9S377_A0A0D9S377_CHLSB_60711 are exactly identical! WARNING: Sequences tr_K7CF92_K7CF92_PANTR_9598 and tr_A0A2K5KWZ3_A0A2K5KWZ3_CERAT_9531 are exactly identical! WARNING: Sequences tr_K7CF92_K7CF92_PANTR_9598 and tr_A0A2K6E6A6_A0A2K6E6A6_MACNE_9545 are exactly identical! WARNING: Sequences tr_K7CF92_K7CF92_PANTR_9598 and tr_A0A2K5Z7Q7_A0A2K5Z7Q7_MANLE_9568 are exactly identical! WARNING: Sequences tr_K7CF92_K7CF92_PANTR_9598 and tr_A0A2R9A7Z8_A0A2R9A7Z8_PANPA_9597 are exactly identical! WARNING: Sequences tr_K7DPE9_K7DPE9_PANTR_9598 and tr_A0A2R9C0A8_A0A2R9C0A8_PANPA_9597 are exactly identical! WARNING: Sequences tr_F7GJU1_F7GJU1_MACMU_9544 and tr_A0A2K5N7L5_A0A2K5N7L5_CERAT_9531 are exactly identical! WARNING: Sequences tr_F7GJU1_F7GJU1_MACMU_9544 and tr_A0A2K6C5M6_A0A2K6C5M6_MACNE_9545 are exactly identical! WARNING: Sequences tr_F7GJU1_F7GJU1_MACMU_9544 and tr_A0A2K5XQG8_A0A2K5XQG8_MANLE_9568 are exactly identical! WARNING: Sequences tr_A0A096P2D9_A0A096P2D9_PAPAN_9555 and tr_A0A2K5KK83_A0A2K5KK83_CERAT_9531 are exactly identical! WARNING: Sequences tr_A0A096P2D9_A0A096P2D9_PAPAN_9555 and tr_A0A2K5YUR7_A0A2K5YUR7_MANLE_9568 are exactly identical! WARNING: Sequences tr_A0A226MAF5_A0A226MAF5_COLVI_9014 and tr_A0A226NMM8_A0A226NMM8_COLVI_9014 are exactly identical! WARNING: Sequences tr_A0A2D0PM18_A0A2D0PM18_ICTPU_7998 and tr_W5U880_W5U880_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QAY8_A0A2D0QAY8_ICTPU_7998 and tr_A0A2D0QDL1_A0A2D0QDL1_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2U4ANA1_A0A2U4ANA1_TURTR_9739 and tr_A0A2Y9Q225_A0A2Y9Q225_DELLE_9749 are exactly identical! WARNING: Duplicate sequences found: 22 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/3_mltree/Q9HBA0.raxml.reduced.phy Alignment comprises 1 partitions and 547 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 547 / 547 Gaps: 9.02 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/3_mltree/Q9HBA0.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 569 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 79 / 6320 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -487054.280951] Initial branch length optimization [00:00:02 -398486.925430] Model parameter optimization (eps = 10.000000) [00:00:16 -397853.984730] AUTODETECT spr round 1 (radius: 5) [00:00:52 -222311.082336] AUTODETECT spr round 2 (radius: 10) [00:01:31 -156083.838045] AUTODETECT spr round 3 (radius: 15) [00:02:13 -129167.523630] AUTODETECT spr round 4 (radius: 20) [00:03:01 -118425.805275] AUTODETECT spr round 5 (radius: 25) [00:04:11 -112536.053441] SPR radius for FAST iterations: 25 (autodetect) [00:04:11 -112536.053441] Model parameter optimization (eps = 3.000000) [00:04:27 -112241.094183] FAST spr round 1 (radius: 25) [00:05:12 -99799.117826] FAST spr round 2 (radius: 25) [00:05:47 -99276.932206] FAST spr round 3 (radius: 25) [00:06:19 -99257.967220] FAST spr round 4 (radius: 25) [00:06:49 -99256.487915] FAST spr round 5 (radius: 25) [00:07:18 -99256.487894] Model parameter optimization (eps = 1.000000) [00:07:27 -99242.156569] SLOW spr round 1 (radius: 5) [00:08:08 -99217.498440] SLOW spr round 2 (radius: 5) [00:08:48 -99217.484358] SLOW spr round 3 (radius: 10) [00:09:28 -99216.344698] SLOW spr round 4 (radius: 5) [00:10:19 -99215.463573] SLOW spr round 5 (radius: 5) [00:11:03 -99215.461673] SLOW spr round 6 (radius: 10) [00:11:44 -99215.461499] SLOW spr round 7 (radius: 15) [00:12:51 -99215.461470] SLOW spr round 8 (radius: 20) [00:14:23 -99215.318801] SLOW spr round 9 (radius: 5) [00:15:18 -99215.260856] SLOW spr round 10 (radius: 10) [00:16:08 -99215.256806] SLOW spr round 11 (radius: 15) [00:17:11 -99215.245949] SLOW spr round 12 (radius: 20) [00:18:44 -99215.245638] SLOW spr round 13 (radius: 25) [00:20:34 -99215.245478] Model parameter optimization (eps = 0.100000) [00:20:46] ML tree search #1, logLikelihood: -99100.050103 [00:20:46 -485887.500766] Initial branch length optimization [00:20:48 -396471.732432] Model parameter optimization (eps = 10.000000) [00:21:06 -395812.059728] AUTODETECT spr round 1 (radius: 5) [00:21:42 -218684.589019] AUTODETECT spr round 2 (radius: 10) [00:22:21 -155554.555022] AUTODETECT spr round 3 (radius: 15) [00:23:03 -126349.754934] AUTODETECT spr round 4 (radius: 20) [00:23:54 -118690.246426] AUTODETECT spr round 5 (radius: 25) [00:24:56 -114074.814179] SPR radius for FAST iterations: 25 (autodetect) [00:24:56 -114074.814179] Model parameter optimization (eps = 3.000000) [00:25:10 -113776.835348] FAST spr round 1 (radius: 25) [00:25:56 -100502.348048] FAST spr round 2 (radius: 25) [00:26:36 -99269.897577] FAST spr round 3 (radius: 25) [00:27:09 -99245.405715] FAST spr round 4 (radius: 25) [00:27:39 -99239.293610] FAST spr round 5 (radius: 25) [00:28:09 -99239.293251] Model parameter optimization (eps = 1.000000) [00:28:16 -99225.042549] SLOW spr round 1 (radius: 5) [00:29:00 -99204.441899] SLOW spr round 2 (radius: 5) [00:29:41 -99202.002913] SLOW spr round 3 (radius: 5) [00:30:20 -99202.002798] SLOW spr round 4 (radius: 10) [00:31:01 -99202.002781] SLOW spr round 5 (radius: 15) [00:32:09 -99202.002772] SLOW spr round 6 (radius: 20) [00:33:44 -99201.871978] SLOW spr round 7 (radius: 5) [00:34:40 -99201.787728] SLOW spr round 8 (radius: 10) [00:35:31 -99201.786490] SLOW spr round 9 (radius: 15) [00:36:34 -99201.785882] SLOW spr round 10 (radius: 20) [00:38:12 -99201.785582] SLOW spr round 11 (radius: 25) [00:40:03 -99201.785432] Model parameter optimization (eps = 0.100000) [00:40:08] ML tree search #2, logLikelihood: -99201.707340 [00:40:08 -486172.348224] Initial branch length optimization [00:40:10 -400055.297312] Model parameter optimization (eps = 10.000000) [00:40:24 -399424.841534] AUTODETECT spr round 1 (radius: 5) [00:41:01 -212651.511792] AUTODETECT spr round 2 (radius: 10) [00:41:39 -153478.361092] AUTODETECT spr round 3 (radius: 15) [00:42:22 -123937.151153] AUTODETECT spr round 4 (radius: 20) [00:43:07 -114446.474904] AUTODETECT spr round 5 (radius: 25) [00:44:04 -112834.869825] SPR radius for FAST iterations: 25 (autodetect) [00:44:04 -112834.869825] Model parameter optimization (eps = 3.000000) [00:44:25 -112358.904995] FAST spr round 1 (radius: 25) [00:45:06 -99880.321936] FAST spr round 2 (radius: 25) [00:45:40 -99174.485960] FAST spr round 3 (radius: 25) [00:46:13 -99094.663021] FAST spr round 4 (radius: 25) [00:46:43 -99094.662159] Model parameter optimization (eps = 1.000000) [00:46:50 -99084.591246] SLOW spr round 1 (radius: 5) [00:47:32 -99064.679876] SLOW spr round 2 (radius: 5) [00:48:12 -99064.202710] SLOW spr round 3 (radius: 5) [00:48:51 -99064.202154] SLOW spr round 4 (radius: 10) [00:49:31 -99064.160213] SLOW spr round 5 (radius: 15) [00:50:39 -99064.159141] SLOW spr round 6 (radius: 20) [00:52:16 -99063.960007] SLOW spr round 7 (radius: 5) [00:53:11 -99063.883469] SLOW spr round 8 (radius: 10) [00:54:03 -99063.882320] SLOW spr round 9 (radius: 15) [00:55:05 -99063.881752] SLOW spr round 10 (radius: 20) [00:56:45 -99063.881473] SLOW spr round 11 (radius: 25) [00:58:40 -99063.881334] Model parameter optimization (eps = 0.100000) [00:58:41] ML tree search #3, logLikelihood: -99063.879314 [00:58:42 -487846.981899] Initial branch length optimization [00:58:44 -397455.279775] Model parameter optimization (eps = 10.000000) [00:59:04 -396832.685387] AUTODETECT spr round 1 (radius: 5) [00:59:41 -213439.559230] AUTODETECT spr round 2 (radius: 10) [01:00:22 -148157.698345] AUTODETECT spr round 3 (radius: 15) [01:01:09 -120193.255229] AUTODETECT spr round 4 (radius: 20) [01:02:07 -110583.625362] AUTODETECT spr round 5 (radius: 25) [01:03:08 -109945.924402] SPR radius for FAST iterations: 25 (autodetect) [01:03:08 -109945.924402] Model parameter optimization (eps = 3.000000) [01:03:23 -109689.493605] FAST spr round 1 (radius: 25) [01:04:10 -99675.244244] FAST spr round 2 (radius: 25) [01:04:49 -99246.678218] FAST spr round 3 (radius: 25) [01:05:23 -99230.591233] FAST spr round 4 (radius: 25) [01:05:54 -99229.122607] FAST spr round 5 (radius: 25) [01:06:24 -99229.122598] Model parameter optimization (eps = 1.000000) [01:06:33 -99217.896925] SLOW spr round 1 (radius: 5) [01:07:15 -99198.653677] SLOW spr round 2 (radius: 5) [01:07:58 -99198.142660] SLOW spr round 3 (radius: 5) [01:08:37 -99198.142588] SLOW spr round 4 (radius: 10) [01:09:18 -99198.142557] SLOW spr round 5 (radius: 15) [01:10:27 -99197.404489] SLOW spr round 6 (radius: 5) [01:11:21 -99196.846747] SLOW spr round 7 (radius: 5) [01:12:08 -99196.846612] SLOW spr round 8 (radius: 10) [01:12:50 -99196.846593] SLOW spr round 9 (radius: 15) [01:13:56 -99196.846590] SLOW spr round 10 (radius: 20) [01:15:29 -99196.692783] SLOW spr round 11 (radius: 5) [01:16:25 -99196.635820] SLOW spr round 12 (radius: 10) [01:17:15 -99196.634604] SLOW spr round 13 (radius: 15) [01:18:18 -99196.627453] SLOW spr round 14 (radius: 20) [01:19:52 -99196.627162] SLOW spr round 15 (radius: 25) [01:21:44 -99196.627019] Model parameter optimization (eps = 0.100000) [01:21:46] ML tree search #4, logLikelihood: -99196.618797 [01:21:46 -485211.007862] Initial branch length optimization [01:21:48 -393980.253732] Model parameter optimization (eps = 10.000000) [01:22:04 -393376.394315] AUTODETECT spr round 1 (radius: 5) [01:22:41 -210989.959330] AUTODETECT spr round 2 (radius: 10) [01:23:20 -141189.420571] AUTODETECT spr round 3 (radius: 15) [01:24:05 -123313.149688] AUTODETECT spr round 4 (radius: 20) [01:24:58 -114335.138237] AUTODETECT spr round 5 (radius: 25) [01:25:48 -109318.579278] SPR radius for FAST iterations: 25 (autodetect) [01:25:48 -109318.579278] Model parameter optimization (eps = 3.000000) [01:26:02 -109047.740449] FAST spr round 1 (radius: 25) [01:26:47 -99628.719502] FAST spr round 2 (radius: 25) [01:27:24 -99245.707118] FAST spr round 3 (radius: 25) [01:27:56 -99238.714507] FAST spr round 4 (radius: 25) [01:28:26 -99238.245344] FAST spr round 5 (radius: 25) [01:28:55 -99237.604338] FAST spr round 6 (radius: 25) [01:29:24 -99237.604335] Model parameter optimization (eps = 1.000000) [01:29:30 -99234.555051] SLOW spr round 1 (radius: 5) [01:30:12 -99212.421070] SLOW spr round 2 (radius: 5) [01:30:53 -99212.060295] SLOW spr round 3 (radius: 5) [01:31:32 -99212.060243] SLOW spr round 4 (radius: 10) [01:32:11 -99212.060231] SLOW spr round 5 (radius: 15) [01:33:19 -99212.060230] SLOW spr round 6 (radius: 20) [01:34:51 -99211.906663] SLOW spr round 7 (radius: 5) [01:35:47 -99211.847991] SLOW spr round 8 (radius: 10) [01:36:37 -99211.846750] SLOW spr round 9 (radius: 15) [01:37:39 -99211.846141] SLOW spr round 10 (radius: 20) [01:39:13 -99211.845827] SLOW spr round 11 (radius: 25) [01:41:04 -99211.845680] Model parameter optimization (eps = 0.100000) [01:41:16] ML tree search #5, logLikelihood: -99089.798557 [01:41:16 -488716.997806] Initial branch length optimization [01:41:18 -400856.677918] Model parameter optimization (eps = 10.000000) [01:41:37 -400283.848729] AUTODETECT spr round 1 (radius: 5) [01:42:14 -210616.742817] AUTODETECT spr round 2 (radius: 10) [01:42:52 -149457.272304] AUTODETECT spr round 3 (radius: 15) [01:43:35 -132315.435409] AUTODETECT spr round 4 (radius: 20) [01:44:27 -121691.602977] AUTODETECT spr round 5 (radius: 25) [01:45:26 -117368.656097] SPR radius for FAST iterations: 25 (autodetect) [01:45:26 -117368.656097] Model parameter optimization (eps = 3.000000) [01:45:38 -117102.862699] FAST spr round 1 (radius: 25) [01:46:27 -100253.377773] FAST spr round 2 (radius: 25) [01:47:04 -99256.331012] FAST spr round 3 (radius: 25) [01:47:37 -99240.309016] FAST spr round 4 (radius: 25) [01:48:07 -99240.304487] Model parameter optimization (eps = 1.000000) [01:48:17 -99226.969216] SLOW spr round 1 (radius: 5) [01:49:00 -99206.282541] SLOW spr round 2 (radius: 5) [01:49:41 -99205.553669] SLOW spr round 3 (radius: 5) [01:50:21 -99205.553390] SLOW spr round 4 (radius: 10) [01:51:01 -99205.496326] SLOW spr round 5 (radius: 15) [01:52:09 -99205.496141] SLOW spr round 6 (radius: 20) [01:53:42 -99205.496127] SLOW spr round 7 (radius: 25) [01:55:33 -99205.496117] Model parameter optimization (eps = 0.100000) [01:55:36] ML tree search #6, logLikelihood: -99205.402529 [01:55:36 -487820.916352] Initial branch length optimization [01:55:38 -393362.409841] Model parameter optimization (eps = 10.000000) [01:55:53 -392806.592813] AUTODETECT spr round 1 (radius: 5) [01:56:30 -222008.270237] AUTODETECT spr round 2 (radius: 10) [01:57:09 -162296.178357] AUTODETECT spr round 3 (radius: 15) [01:57:56 -133705.266319] AUTODETECT spr round 4 (radius: 20) [01:59:03 -115684.163827] AUTODETECT spr round 5 (radius: 25) [02:00:01 -114706.790283] SPR radius for FAST iterations: 25 (autodetect) [02:00:01 -114706.790283] Model parameter optimization (eps = 3.000000) [02:00:16 -114244.522533] FAST spr round 1 (radius: 25) [02:00:59 -99901.182508] FAST spr round 2 (radius: 25) [02:01:35 -99138.721686] FAST spr round 3 (radius: 25) [02:02:08 -99086.234407] FAST spr round 4 (radius: 25) [02:02:38 -99086.231786] Model parameter optimization (eps = 1.000000) [02:02:45 -99083.187332] SLOW spr round 1 (radius: 5) [02:03:28 -99065.759857] SLOW spr round 2 (radius: 5) [02:04:09 -99063.961307] SLOW spr round 3 (radius: 5) [02:04:48 -99063.127817] SLOW spr round 4 (radius: 5) [02:05:27 -99063.127572] SLOW spr round 5 (radius: 10) [02:06:07 -99062.781865] SLOW spr round 6 (radius: 5) [02:06:58 -99062.781700] SLOW spr round 7 (radius: 10) [02:07:43 -99062.781698] SLOW spr round 8 (radius: 15) [02:08:47 -99062.744341] SLOW spr round 9 (radius: 20) [02:10:22 -99062.545055] SLOW spr round 10 (radius: 5) [02:11:17 -99062.467733] SLOW spr round 11 (radius: 10) [02:12:08 -99062.466568] SLOW spr round 12 (radius: 15) [02:13:10 -99062.465993] SLOW spr round 13 (radius: 20) [02:14:45 -99062.465709] SLOW spr round 14 (radius: 25) [02:16:38 -99062.465568] Model parameter optimization (eps = 0.100000) [02:16:42] ML tree search #7, logLikelihood: -99062.395486 [02:16:42 -484488.892573] Initial branch length optimization [02:16:44 -394976.341675] Model parameter optimization (eps = 10.000000) [02:17:02 -394363.887226] AUTODETECT spr round 1 (radius: 5) [02:17:38 -224259.761153] AUTODETECT spr round 2 (radius: 10) [02:18:16 -156961.610898] AUTODETECT spr round 3 (radius: 15) [02:19:00 -139766.969529] AUTODETECT spr round 4 (radius: 20) [02:19:56 -118433.567402] AUTODETECT spr round 5 (radius: 25) [02:20:51 -114963.377295] SPR radius for FAST iterations: 25 (autodetect) [02:20:51 -114963.377295] Model parameter optimization (eps = 3.000000) [02:21:02 -114705.969786] FAST spr round 1 (radius: 25) [02:21:48 -100409.426146] FAST spr round 2 (radius: 25) [02:22:24 -99251.175004] FAST spr round 3 (radius: 25) [02:22:58 -99233.900135] FAST spr round 4 (radius: 25) [02:23:27 -99233.895543] Model parameter optimization (eps = 1.000000) [02:23:38 -99224.245909] SLOW spr round 1 (radius: 5) [02:24:20 -99200.954125] SLOW spr round 2 (radius: 5) [02:25:01 -99200.265632] SLOW spr round 3 (radius: 5) [02:25:40 -99200.265546] SLOW spr round 4 (radius: 10) [02:26:21 -99197.958006] SLOW spr round 5 (radius: 5) [02:27:12 -99197.957018] SLOW spr round 6 (radius: 10) [02:27:57 -99197.956966] SLOW spr round 7 (radius: 15) [02:29:00 -99197.956958] SLOW spr round 8 (radius: 20) [02:30:35 -99197.792041] SLOW spr round 9 (radius: 5) [02:31:31 -99197.734932] SLOW spr round 10 (radius: 10) [02:32:22 -99197.733715] SLOW spr round 11 (radius: 15) [02:33:24 -99197.733104] SLOW spr round 12 (radius: 20) [02:34:59 -99197.732813] SLOW spr round 13 (radius: 25) [02:36:49 -99197.732670] Model parameter optimization (eps = 0.100000) [02:36:54] ML tree search #8, logLikelihood: -99197.600364 [02:36:54 -489780.417129] Initial branch length optimization [02:36:57 -403294.037510] Model parameter optimization (eps = 10.000000) [02:37:14 -402574.608676] AUTODETECT spr round 1 (radius: 5) [02:37:51 -217383.907627] AUTODETECT spr round 2 (radius: 10) [02:38:28 -159389.054208] AUTODETECT spr round 3 (radius: 15) [02:39:16 -133473.872457] AUTODETECT spr round 4 (radius: 20) [02:40:09 -126744.514041] AUTODETECT spr round 5 (radius: 25) [02:41:02 -120162.734225] SPR radius for FAST iterations: 25 (autodetect) [02:41:02 -120162.734225] Model parameter optimization (eps = 3.000000) [02:41:20 -119896.965445] FAST spr round 1 (radius: 25) [02:42:06 -101749.943467] FAST spr round 2 (radius: 25) [02:42:43 -99750.454354] FAST spr round 3 (radius: 25) [02:43:17 -99279.845454] FAST spr round 4 (radius: 25) [02:43:48 -99241.728674] FAST spr round 5 (radius: 25) [02:44:17 -99240.993349] FAST spr round 6 (radius: 25) [02:44:46 -99240.993347] Model parameter optimization (eps = 1.000000) [02:44:54 -99229.388836] SLOW spr round 1 (radius: 5) [02:45:35 -99207.984998] SLOW spr round 2 (radius: 5) [02:46:15 -99207.982199] SLOW spr round 3 (radius: 10) [02:46:55 -99205.467233] SLOW spr round 4 (radius: 5) [02:47:47 -99205.467091] SLOW spr round 5 (radius: 10) [02:48:32 -99205.467089] SLOW spr round 6 (radius: 15) [02:49:38 -99205.373216] SLOW spr round 7 (radius: 20) [02:51:14 -99205.247115] SLOW spr round 8 (radius: 5) [02:52:10 -99205.162876] SLOW spr round 9 (radius: 10) [02:53:01 -99205.161639] SLOW spr round 10 (radius: 15) [02:54:05 -99205.161032] SLOW spr round 11 (radius: 20) [02:55:43 -99205.160735] SLOW spr round 12 (radius: 25) [02:57:36 -99205.160590] Model parameter optimization (eps = 0.100000) [02:57:39] ML tree search #9, logLikelihood: -99205.104180 [02:57:39 -484889.405175] Initial branch length optimization [02:57:41 -393743.970520] Model parameter optimization (eps = 10.000000) [02:57:58 -393163.499290] AUTODETECT spr round 1 (radius: 5) [02:58:35 -216989.198880] AUTODETECT spr round 2 (radius: 10) [02:59:15 -149554.798805] AUTODETECT spr round 3 (radius: 15) [02:59:56 -128876.131606] AUTODETECT spr round 4 (radius: 20) [03:00:47 -116724.462278] AUTODETECT spr round 5 (radius: 25) [03:01:46 -113235.239258] SPR radius for FAST iterations: 25 (autodetect) [03:01:46 -113235.239258] Model parameter optimization (eps = 3.000000) [03:01:59 -112940.756342] FAST spr round 1 (radius: 25) [03:02:47 -100419.756500] FAST spr round 2 (radius: 25) [03:03:24 -99371.641004] FAST spr round 3 (radius: 25) [03:03:59 -99242.326965] FAST spr round 4 (radius: 25) [03:04:30 -99238.806844] FAST spr round 5 (radius: 25) [03:04:59 -99238.806754] Model parameter optimization (eps = 1.000000) [03:05:06 -99225.405155] SLOW spr round 1 (radius: 5) [03:05:48 -99206.070785] SLOW spr round 2 (radius: 5) [03:06:28 -99206.069420] SLOW spr round 3 (radius: 10) [03:07:08 -99205.973493] SLOW spr round 4 (radius: 15) [03:08:17 -99205.972673] SLOW spr round 5 (radius: 20) [03:09:52 -99205.850015] SLOW spr round 6 (radius: 5) [03:10:48 -99205.765453] SLOW spr round 7 (radius: 10) [03:11:38 -99205.764203] SLOW spr round 8 (radius: 15) [03:12:42 -99205.763588] SLOW spr round 9 (radius: 20) [03:14:18 -99205.763284] SLOW spr round 10 (radius: 25) [03:16:10 -99205.763133] Model parameter optimization (eps = 0.100000) [03:16:27] ML tree search #10, logLikelihood: -99085.582503 [03:16:27 -485269.520509] Initial branch length optimization [03:16:29 -395364.413919] Model parameter optimization (eps = 10.000000) [03:16:43 -394735.420082] AUTODETECT spr round 1 (radius: 5) [03:17:20 -208377.268562] AUTODETECT spr round 2 (radius: 10) [03:17:57 -153941.631617] AUTODETECT spr round 3 (radius: 15) [03:18:41 -128428.041763] AUTODETECT spr round 4 (radius: 20) [03:19:34 -115646.163152] AUTODETECT spr round 5 (radius: 25) [03:20:35 -114392.801401] SPR radius for FAST iterations: 25 (autodetect) [03:20:35 -114392.801401] Model parameter optimization (eps = 3.000000) [03:20:50 -114118.038940] FAST spr round 1 (radius: 25) [03:21:36 -99661.745418] FAST spr round 2 (radius: 25) [03:22:12 -99256.074800] FAST spr round 3 (radius: 25) [03:22:45 -99242.909574] FAST spr round 4 (radius: 25) [03:23:14 -99242.908923] Model parameter optimization (eps = 1.000000) [03:23:22 -99236.642526] SLOW spr round 1 (radius: 5) [03:24:05 -99222.308999] SLOW spr round 2 (radius: 5) [03:24:46 -99220.661414] SLOW spr round 3 (radius: 5) [03:25:26 -99220.660802] SLOW spr round 4 (radius: 10) [03:26:06 -99217.901145] SLOW spr round 5 (radius: 5) [03:26:58 -99216.959906] SLOW spr round 6 (radius: 5) [03:27:43 -99216.317794] SLOW spr round 7 (radius: 5) [03:28:25 -99215.920003] SLOW spr round 8 (radius: 5) [03:29:05 -99215.918340] SLOW spr round 9 (radius: 10) [03:29:45 -99215.918228] SLOW spr round 10 (radius: 15) [03:30:53 -99215.918209] SLOW spr round 11 (radius: 20) [03:32:27 -99215.918196] SLOW spr round 12 (radius: 25) [03:34:19 -99215.918184] Model parameter optimization (eps = 0.100000) [03:34:24] ML tree search #11, logLikelihood: -99215.684498 [03:34:24 -488553.153914] Initial branch length optimization [03:34:27 -399196.314246] Model parameter optimization (eps = 10.000000) [03:34:44 -398534.125705] AUTODETECT spr round 1 (radius: 5) [03:35:21 -207070.163500] AUTODETECT spr round 2 (radius: 10) [03:36:00 -149555.141430] AUTODETECT spr round 3 (radius: 15) [03:36:48 -127569.834599] AUTODETECT spr round 4 (radius: 20) [03:37:46 -114063.841081] AUTODETECT spr round 5 (radius: 25) [03:38:45 -112913.021088] SPR radius for FAST iterations: 25 (autodetect) [03:38:45 -112913.021088] Model parameter optimization (eps = 3.000000) [03:39:00 -112558.980882] FAST spr round 1 (radius: 25) [03:39:44 -99924.113722] FAST spr round 2 (radius: 25) [03:40:21 -99288.717357] FAST spr round 3 (radius: 25) [03:40:54 -99238.415928] FAST spr round 4 (radius: 25) [03:41:25 -99233.471661] FAST spr round 5 (radius: 25) [03:41:54 -99233.471453] Model parameter optimization (eps = 1.000000) [03:42:01 -99225.275559] SLOW spr round 1 (radius: 5) [03:42:43 -99205.742043] SLOW spr round 2 (radius: 5) [03:43:23 -99205.741175] SLOW spr round 3 (radius: 10) [03:44:04 -99204.760871] SLOW spr round 4 (radius: 5) [03:44:54 -99204.760677] SLOW spr round 5 (radius: 10) [03:45:39 -99204.760671] SLOW spr round 6 (radius: 15) [03:46:44 -99204.669813] SLOW spr round 7 (radius: 20) [03:48:21 -99204.516623] SLOW spr round 8 (radius: 5) [03:49:16 -99204.458189] SLOW spr round 9 (radius: 10) [03:50:07 -99204.456942] SLOW spr round 10 (radius: 15) [03:51:10 -99204.456312] SLOW spr round 11 (radius: 20) [03:52:48 -99204.456011] SLOW spr round 12 (radius: 25) [03:54:40 -99204.455862] Model parameter optimization (eps = 0.100000) [03:54:47] ML tree search #12, logLikelihood: -99204.334794 [03:54:47 -497066.041639] Initial branch length optimization [03:54:49 -402919.247461] Model parameter optimization (eps = 10.000000) [03:55:02 -402204.304529] AUTODETECT spr round 1 (radius: 5) [03:55:39 -212301.517683] AUTODETECT spr round 2 (radius: 10) [03:56:18 -148962.135324] AUTODETECT spr round 3 (radius: 15) [03:57:02 -126336.186892] AUTODETECT spr round 4 (radius: 20) [03:57:57 -116651.457834] AUTODETECT spr round 5 (radius: 25) [03:59:05 -113359.198651] SPR radius for FAST iterations: 25 (autodetect) [03:59:05 -113359.198651] Model parameter optimization (eps = 3.000000) [03:59:21 -113089.018385] FAST spr round 1 (radius: 25) [04:00:03 -99802.004013] FAST spr round 2 (radius: 25) [04:00:42 -99289.506481] FAST spr round 3 (radius: 25) [04:01:16 -99250.362346] FAST spr round 4 (radius: 25) [04:01:46 -99248.912827] FAST spr round 5 (radius: 25) [04:02:15 -99248.912773] Model parameter optimization (eps = 1.000000) [04:02:25 -99241.811070] SLOW spr round 1 (radius: 5) [04:03:07 -99211.502027] SLOW spr round 2 (radius: 5) [04:03:48 -99209.879165] SLOW spr round 3 (radius: 5) [04:04:27 -99209.354738] SLOW spr round 4 (radius: 5) [04:05:06 -99209.354611] SLOW spr round 5 (radius: 10) [04:05:46 -99207.365784] SLOW spr round 6 (radius: 5) [04:06:37 -99207.365700] SLOW spr round 7 (radius: 10) [04:07:22 -99207.365697] SLOW spr round 8 (radius: 15) [04:08:26 -99206.644798] SLOW spr round 9 (radius: 5) [04:09:21 -99206.626285] SLOW spr round 10 (radius: 10) [04:10:09 -99206.623952] SLOW spr round 11 (radius: 15) [04:11:12 -99206.622623] SLOW spr round 12 (radius: 20) [04:12:47 -99206.491078] SLOW spr round 13 (radius: 5) [04:13:43 -99206.406210] SLOW spr round 14 (radius: 10) [04:14:33 -99206.404979] SLOW spr round 15 (radius: 15) [04:15:37 -99206.404376] SLOW spr round 16 (radius: 20) [04:17:11 -99206.404080] SLOW spr round 17 (radius: 25) [04:19:01 -99206.403933] Model parameter optimization (eps = 0.100000) [04:19:13] ML tree search #13, logLikelihood: -99087.030670 [04:19:13 -488802.845196] Initial branch length optimization [04:19:15 -396575.928824] Model parameter optimization (eps = 10.000000) [04:19:28 -396015.932527] AUTODETECT spr round 1 (radius: 5) [04:20:05 -221232.973233] AUTODETECT spr round 2 (radius: 10) [04:20:43 -156680.197866] AUTODETECT spr round 3 (radius: 15) [04:21:30 -122586.788025] AUTODETECT spr round 4 (radius: 20) [04:22:17 -112221.394022] AUTODETECT spr round 5 (radius: 25) [04:23:08 -111059.109323] SPR radius for FAST iterations: 25 (autodetect) [04:23:08 -111059.109323] Model parameter optimization (eps = 3.000000) [04:23:33 -110538.356389] FAST spr round 1 (radius: 25) [04:24:18 -99618.624928] FAST spr round 2 (radius: 25) [04:24:55 -99107.743690] FAST spr round 3 (radius: 25) [04:25:28 -99091.718293] FAST spr round 4 (radius: 25) [04:25:59 -99088.308977] FAST spr round 5 (radius: 25) [04:26:28 -99088.308976] Model parameter optimization (eps = 1.000000) [04:26:35 -99083.240242] SLOW spr round 1 (radius: 5) [04:27:17 -99061.160287] SLOW spr round 2 (radius: 5) [04:27:57 -99059.697414] SLOW spr round 3 (radius: 5) [04:28:36 -99059.697349] SLOW spr round 4 (radius: 10) [04:29:16 -99059.697344] SLOW spr round 5 (radius: 15) [04:30:24 -99059.658767] SLOW spr round 6 (radius: 20) [04:31:57 -99059.434624] SLOW spr round 7 (radius: 5) [04:32:53 -99059.381531] SLOW spr round 8 (radius: 10) [04:33:43 -99059.380373] SLOW spr round 9 (radius: 15) [04:34:46 -99059.379801] SLOW spr round 10 (radius: 20) [04:36:21 -99059.379505] SLOW spr round 11 (radius: 25) [04:38:14 -99059.379365] Model parameter optimization (eps = 0.100000) [04:38:18] ML tree search #14, logLikelihood: -99059.348486 [04:38:18 -485172.962903] Initial branch length optimization [04:38:20 -394528.143933] Model parameter optimization (eps = 10.000000) [04:38:34 -393853.209139] AUTODETECT spr round 1 (radius: 5) [04:39:11 -214140.569489] AUTODETECT spr round 2 (radius: 10) [04:39:49 -145808.887268] AUTODETECT spr round 3 (radius: 15) [04:40:36 -121979.295291] AUTODETECT spr round 4 (radius: 20) [04:41:28 -118550.959663] AUTODETECT spr round 5 (radius: 25) [04:42:28 -114272.063062] SPR radius for FAST iterations: 25 (autodetect) [04:42:28 -114272.063062] Model parameter optimization (eps = 3.000000) [04:42:42 -113986.287293] FAST spr round 1 (radius: 25) [04:43:27 -99893.367311] FAST spr round 2 (radius: 25) [04:44:03 -99361.780713] FAST spr round 3 (radius: 25) [04:44:37 -99241.387484] FAST spr round 4 (radius: 25) [04:45:08 -99240.418020] FAST spr round 5 (radius: 25) [04:45:37 -99240.417938] Model parameter optimization (eps = 1.000000) [04:45:46 -99227.810203] SLOW spr round 1 (radius: 5) [04:46:28 -99210.898125] SLOW spr round 2 (radius: 5) [04:47:09 -99210.019362] SLOW spr round 3 (radius: 5) [04:47:48 -99210.018682] SLOW spr round 4 (radius: 10) [04:48:28 -99210.018506] SLOW spr round 5 (radius: 15) [04:49:38 -99209.925627] SLOW spr round 6 (radius: 20) [04:51:13 -99209.797322] SLOW spr round 7 (radius: 5) [04:52:08 -99209.711969] SLOW spr round 8 (radius: 10) [04:52:59 -99209.710727] SLOW spr round 9 (radius: 15) [04:54:04 -99209.710119] SLOW spr round 10 (radius: 20) [04:55:41 -99209.709821] SLOW spr round 11 (radius: 25) [04:57:35 -99209.709675] Model parameter optimization (eps = 0.100000) [04:57:53] ML tree search #15, logLikelihood: -99087.287288 [04:57:53 -488700.899961] Initial branch length optimization [04:57:55 -398433.668402] Model parameter optimization (eps = 10.000000) [04:58:08 -397793.435720] AUTODETECT spr round 1 (radius: 5) [04:58:44 -209338.339447] AUTODETECT spr round 2 (radius: 10) [04:59:24 -144523.493481] AUTODETECT spr round 3 (radius: 15) [05:00:09 -123153.690489] AUTODETECT spr round 4 (radius: 20) [05:01:05 -113356.285007] AUTODETECT spr round 5 (radius: 25) [05:02:04 -112469.717572] SPR radius for FAST iterations: 25 (autodetect) [05:02:04 -112469.717572] Model parameter optimization (eps = 3.000000) [05:02:18 -112178.037080] FAST spr round 1 (radius: 25) [05:03:03 -99922.362565] FAST spr round 2 (radius: 25) [05:03:41 -99270.112185] FAST spr round 3 (radius: 25) [05:04:14 -99240.830359] FAST spr round 4 (radius: 25) [05:04:45 -99233.035270] FAST spr round 5 (radius: 25) [05:05:14 -99233.034262] Model parameter optimization (eps = 1.000000) [05:05:37 -99114.151419] SLOW spr round 1 (radius: 5) [05:06:20 -99070.182247] SLOW spr round 2 (radius: 5) [05:07:01 -99069.826111] SLOW spr round 3 (radius: 5) [05:07:40 -99069.807033] SLOW spr round 4 (radius: 10) [05:08:21 -99068.945485] SLOW spr round 5 (radius: 5) [05:09:12 -99068.945238] SLOW spr round 6 (radius: 10) [05:09:58 -99068.945237] SLOW spr round 7 (radius: 15) [05:11:00 -99068.945236] SLOW spr round 8 (radius: 20) [05:12:32 -99068.945236] SLOW spr round 9 (radius: 25) [05:14:23 -99068.945236] Model parameter optimization (eps = 0.100000) [05:14:26] ML tree search #16, logLikelihood: -99068.884936 [05:14:26 -492065.266306] Initial branch length optimization [05:14:28 -403885.410114] Model parameter optimization (eps = 10.000000) [05:14:43 -403162.836304] AUTODETECT spr round 1 (radius: 5) [05:15:20 -210722.115161] AUTODETECT spr round 2 (radius: 10) [05:15:58 -143276.449597] AUTODETECT spr round 3 (radius: 15) [05:16:40 -130609.821959] AUTODETECT spr round 4 (radius: 20) [05:17:35 -118214.129103] AUTODETECT spr round 5 (radius: 25) [05:18:33 -114199.191172] SPR radius for FAST iterations: 25 (autodetect) [05:18:33 -114199.191172] Model parameter optimization (eps = 3.000000) [05:18:49 -113904.252018] FAST spr round 1 (radius: 25) [05:19:35 -99956.883217] FAST spr round 2 (radius: 25) [05:20:13 -99247.434910] FAST spr round 3 (radius: 25) [05:20:45 -99231.207745] FAST spr round 4 (radius: 25) [05:21:16 -99228.162944] FAST spr round 5 (radius: 25) [05:21:45 -99228.162907] Model parameter optimization (eps = 1.000000) [05:21:54 -99215.744867] SLOW spr round 1 (radius: 5) [05:22:36 -99202.418363] SLOW spr round 2 (radius: 5) [05:23:16 -99202.416136] SLOW spr round 3 (radius: 10) [05:23:56 -99200.344529] SLOW spr round 4 (radius: 5) [05:24:48 -99200.344068] SLOW spr round 5 (radius: 10) [05:25:33 -99200.344021] SLOW spr round 6 (radius: 15) [05:26:37 -99200.344013] SLOW spr round 7 (radius: 20) [05:28:11 -99200.209958] SLOW spr round 8 (radius: 5) [05:29:06 -99200.151798] SLOW spr round 9 (radius: 10) [05:29:57 -99200.150560] SLOW spr round 10 (radius: 15) [05:31:00 -99200.142600] SLOW spr round 11 (radius: 20) [05:32:34 -99200.142303] SLOW spr round 12 (radius: 25) [05:34:24 -99200.142157] Model parameter optimization (eps = 0.100000) [05:34:28] ML tree search #17, logLikelihood: -99200.053942 [05:34:28 -484154.494688] Initial branch length optimization [05:34:30 -393711.640776] Model parameter optimization (eps = 10.000000) [05:34:44 -393154.274916] AUTODETECT spr round 1 (radius: 5) [05:35:21 -221158.765252] AUTODETECT spr round 2 (radius: 10) [05:35:59 -153294.243911] AUTODETECT spr round 3 (radius: 15) [05:36:43 -125319.168029] AUTODETECT spr round 4 (radius: 20) [05:37:37 -117263.229300] AUTODETECT spr round 5 (radius: 25) [05:38:33 -115574.281731] SPR radius for FAST iterations: 25 (autodetect) [05:38:33 -115574.281731] Model parameter optimization (eps = 3.000000) [05:38:47 -115253.563402] FAST spr round 1 (radius: 25) [05:39:30 -100129.869542] FAST spr round 2 (radius: 25) [05:40:05 -99271.243754] FAST spr round 3 (radius: 25) [05:40:38 -99238.520283] FAST spr round 4 (radius: 25) [05:41:08 -99238.520128] Model parameter optimization (eps = 1.000000) [05:41:16 -99221.340094] SLOW spr round 1 (radius: 5) [05:41:59 -99208.065390] SLOW spr round 2 (radius: 5) [05:42:39 -99208.063714] SLOW spr round 3 (radius: 10) [05:43:20 -99207.694584] SLOW spr round 4 (radius: 5) [05:44:12 -99207.530336] SLOW spr round 5 (radius: 5) [05:44:56 -99207.530326] SLOW spr round 6 (radius: 10) [05:45:39 -99207.530325] SLOW spr round 7 (radius: 15) [05:46:43 -99207.433106] SLOW spr round 8 (radius: 20) [05:48:20 -99207.306376] SLOW spr round 9 (radius: 5) [05:49:16 -99207.222876] SLOW spr round 10 (radius: 10) [05:50:08 -99207.221653] SLOW spr round 11 (radius: 15) [05:51:08 -99207.221054] SLOW spr round 12 (radius: 20) [05:52:48 -99207.220760] SLOW spr round 13 (radius: 25) [05:54:37 -99207.220616] Model parameter optimization (eps = 0.100000) [05:54:39] ML tree search #18, logLikelihood: -99207.194283 [05:54:39 -492693.964551] Initial branch length optimization [05:54:41 -399247.655237] Model parameter optimization (eps = 10.000000) [05:54:55 -398628.415307] AUTODETECT spr round 1 (radius: 5) [05:55:32 -214985.666645] AUTODETECT spr round 2 (radius: 10) [05:56:11 -151531.404684] AUTODETECT spr round 3 (radius: 15) [05:56:53 -118329.518463] AUTODETECT spr round 4 (radius: 20) [05:57:47 -113232.039543] AUTODETECT spr round 5 (radius: 25) [05:58:50 -110608.731321] SPR radius for FAST iterations: 25 (autodetect) [05:58:50 -110608.731321] Model parameter optimization (eps = 3.000000) [05:59:05 -110319.721334] FAST spr round 1 (radius: 25) [05:59:49 -99797.852473] FAST spr round 2 (radius: 25) [06:00:28 -99275.210046] FAST spr round 3 (radius: 25) [06:01:00 -99235.676968] FAST spr round 4 (radius: 25) [06:01:30 -99235.676941] Model parameter optimization (eps = 1.000000) [06:01:37 -99224.228614] SLOW spr round 1 (radius: 5) [06:02:19 -99206.543439] SLOW spr round 2 (radius: 5) [06:03:01 -99203.958108] SLOW spr round 3 (radius: 5) [06:03:40 -99203.957878] SLOW spr round 4 (radius: 10) [06:04:20 -99203.396343] SLOW spr round 5 (radius: 5) [06:05:12 -99202.875208] SLOW spr round 6 (radius: 5) [06:05:58 -99202.875109] SLOW spr round 7 (radius: 10) [06:06:39 -99202.875096] SLOW spr round 8 (radius: 15) [06:07:44 -99202.875089] SLOW spr round 9 (radius: 20) [06:09:15 -99202.734207] SLOW spr round 10 (radius: 5) [06:10:10 -99202.677007] SLOW spr round 11 (radius: 10) [06:11:00 -99202.673068] SLOW spr round 12 (radius: 15) [06:12:02 -99202.654109] SLOW spr round 13 (radius: 20) [06:13:34 -99202.653810] SLOW spr round 14 (radius: 25) [06:15:22 -99202.653661] Model parameter optimization (eps = 0.100000) [06:15:28] ML tree search #19, logLikelihood: -99202.387112 [06:15:28 -488629.881166] Initial branch length optimization [06:15:30 -396310.376949] Model parameter optimization (eps = 10.000000) [06:15:46 -395666.865346] AUTODETECT spr round 1 (radius: 5) [06:16:22 -218730.472446] AUTODETECT spr round 2 (radius: 10) [06:17:01 -148806.638244] AUTODETECT spr round 3 (radius: 15) [06:17:48 -121144.558926] AUTODETECT spr round 4 (radius: 20) [06:18:34 -113132.504975] AUTODETECT spr round 5 (radius: 25) [06:19:27 -111768.507117] SPR radius for FAST iterations: 25 (autodetect) [06:19:27 -111768.507117] Model parameter optimization (eps = 3.000000) [06:19:39 -111524.120259] FAST spr round 1 (radius: 25) [06:20:23 -99740.225974] FAST spr round 2 (radius: 25) [06:21:00 -99244.108758] FAST spr round 3 (radius: 25) [06:21:33 -99233.091741] FAST spr round 4 (radius: 25) [06:22:03 -99229.966019] FAST spr round 5 (radius: 25) [06:22:32 -99229.965962] Model parameter optimization (eps = 1.000000) [06:22:40 -99222.750285] SLOW spr round 1 (radius: 5) [06:23:22 -99206.343549] SLOW spr round 2 (radius: 5) [06:24:03 -99202.574376] SLOW spr round 3 (radius: 5) [06:24:42 -99202.574349] SLOW spr round 4 (radius: 10) [06:25:23 -99201.037789] SLOW spr round 5 (radius: 5) [06:26:14 -99201.037425] SLOW spr round 6 (radius: 10) [06:26:59 -99201.037365] SLOW spr round 7 (radius: 15) [06:28:05 -99201.037351] SLOW spr round 8 (radius: 20) [06:29:41 -99200.900426] SLOW spr round 9 (radius: 5) [06:30:37 -99200.817016] SLOW spr round 10 (radius: 10) [06:31:27 -99200.815787] SLOW spr round 11 (radius: 15) [06:32:32 -99200.815184] SLOW spr round 12 (radius: 20) [06:34:10 -99200.814886] SLOW spr round 13 (radius: 25) [06:36:03 -99200.814738] Model parameter optimization (eps = 0.100000) [06:36:05] ML tree search #20, logLikelihood: -99200.800286 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.230330,0.573367) (0.145133,1.418757) (0.429483,0.728888) (0.195054,1.789159) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -99059.348486 AIC score: 200400.696972 / AICc score: 2806444.696972 / BIC score: 205312.073056 Free parameters (model + branch lengths): 1141 WARNING: Number of free parameters (K=1141) is larger than alignment size (n=547). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/3_mltree/Q9HBA0.raxml.bestTree All ML trees saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/3_mltree/Q9HBA0.raxml.mlTrees Optimized model saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/3_mltree/Q9HBA0.raxml.bestModel Execution log saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q9HBA0/3_mltree/Q9HBA0.raxml.log Analysis started: 18-Jun-2021 23:07:28 / finished: 19-Jun-2021 05:43:34 Elapsed time: 23766.036 seconds