RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 02-Jul-2021 18:40:23 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/2_msa/Q96JH8_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/2_msa/Q96JH8_trimmed_msa.fasta [00:00:00] Loaded alignment with 1001 taxa and 586 sites WARNING: Sequences tr_G3QFY4_G3QFY4_GORGO_9595 and sp_Q5U651_RAIN_HUMAN_9606 are exactly identical! WARNING: Sequences tr_G3QWN1_G3QWN1_GORGO_9595 and tr_K7DKX9_K7DKX9_PANTR_9598 are exactly identical! WARNING: Sequences tr_G3QWN1_G3QWN1_GORGO_9595 and sp_P57105_SYJ2B_HUMAN_9606 are exactly identical! WARNING: Sequences tr_G3QWN1_G3QWN1_GORGO_9595 and tr_A0A2K5N7G5_A0A2K5N7G5_CERAT_9531 are exactly identical! WARNING: Sequences tr_G3QWN1_G3QWN1_GORGO_9595 and tr_A0A2K6CCH0_A0A2K6CCH0_MACNE_9545 are exactly identical! WARNING: Sequences tr_G3QWN1_G3QWN1_GORGO_9595 and tr_A0A2R8ZAC0_A0A2R8ZAC0_PANPA_9597 are exactly identical! WARNING: Sequences tr_A0A158NM77_A0A158NM77_ATTCE_12957 and tr_A0A195BWZ5_A0A195BWZ5_9HYME_520822 are exactly identical! WARNING: Sequences sp_Q86UL8_MAGI2_HUMAN_9606 and tr_A0A1D5QV36_A0A1D5QV36_MACMU_9544 are exactly identical! WARNING: Sequences sp_Q86UL8_MAGI2_HUMAN_9606 and tr_A0A337SIQ5_A0A337SIQ5_FELCA_9685 are exactly identical! WARNING: Sequences tr_F6S1D8_F6S1D8_MACMU_9544 and tr_G7P5U8_G7P5U8_MACFA_9541 are exactly identical! WARNING: Sequences tr_F6V3H6_F6V3H6_MACMU_9544 and tr_A0A096NG20_A0A096NG20_PAPAN_9555 are exactly identical! WARNING: Sequences tr_F6V3H6_F6V3H6_MACMU_9544 and tr_A0A2K5LC48_A0A2K5LC48_CERAT_9531 are exactly identical! WARNING: Sequences tr_F6V3H6_F6V3H6_MACMU_9544 and tr_A0A2K6BVS0_A0A2K6BVS0_MACNE_9545 are exactly identical! WARNING: Sequences tr_F6V3H6_F6V3H6_MACMU_9544 and tr_A0A2K5Z3N5_A0A2K5Z3N5_MANLE_9568 are exactly identical! WARNING: Sequences tr_G7P1X6_G7P1X6_MACFA_9541 and tr_A0A2K5YU87_A0A2K5YU87_MANLE_9568 are exactly identical! WARNING: Sequences tr_A0A096N7W8_A0A096N7W8_PAPAN_9555 and tr_A0A2K5NEQ5_A0A2K5NEQ5_CERAT_9531 are exactly identical! WARNING: Sequences tr_A0A096N7W8_A0A096N7W8_PAPAN_9555 and tr_A0A2K5YKF4_A0A2K5YKF4_MANLE_9568 are exactly identical! WARNING: Sequences tr_A0A091VHV5_A0A091VHV5_NIPNI_128390 and tr_A0A087RC05_A0A087RC05_APTFO_9233 are exactly identical! WARNING: Sequences tr_A0A091W0K0_A0A091W0K0_NIPNI_128390 and tr_A0A091WQ79_A0A091WQ79_OPIHO_30419 are exactly identical! WARNING: Sequences tr_A0A091W0K0_A0A091W0K0_NIPNI_128390 and tr_A0A091GQT8_A0A091GQT8_9AVES_55661 are exactly identical! WARNING: Sequences tr_A0A091W0K0_A0A091W0K0_NIPNI_128390 and tr_A0A0A0ADL1_A0A0A0ADL1_CHAVO_50402 are exactly identical! WARNING: Sequences tr_A0A091W0K0_A0A091W0K0_NIPNI_128390 and tr_A0A091HYN7_A0A091HYN7_CALAN_9244 are exactly identical! WARNING: Sequences tr_A0A226NKY7_A0A226NKY7_CALSU_9009 and tr_A0A226PFM1_A0A226PFM1_COLVI_9014 are exactly identical! WARNING: Sequences tr_A0A2D0PNJ7_A0A2D0PNJ7_ICTPU_7998 and tr_A0A2D0PR72_A0A2D0PR72_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0QYS8_A0A2D0QYS8_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0QYT3_A0A2D0QYT3_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0QZ12_A0A2D0QZ12_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0QZ17_A0A2D0QZ17_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0R0K1_A0A2D0R0K1_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0R0L3_A0A2D0R0L3_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0R1A2_A0A2D0R1A2_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0R1A8_A0A2D0R1A8_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYS2_A0A2D0QYS2_ICTPU_7998 and tr_A0A2D0R1B5_A0A2D0R1B5_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYT2_A0A2D0QYT2_ICTPU_7998 and tr_A0A2D0QYU4_A0A2D0QYU4_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYT2_A0A2D0QYT2_ICTPU_7998 and tr_A0A2D0QZ23_A0A2D0QZ23_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYT2_A0A2D0QYT2_ICTPU_7998 and tr_A0A2D0R0K7_A0A2D0R0K7_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0QYU5_A0A2D0QYU5_ICTPU_7998 and tr_A0A2D0QZ28_A0A2D0QZ28_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0RZG4_A0A2D0RZG4_ICTPU_7998 and tr_A0A2D0RZH2_A0A2D0RZH2_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0RZH3_A0A2D0RZH3_ICTPU_7998 and tr_A0A2D0S108_A0A2D0S108_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2D0SBX9_A0A2D0SBX9_ICTPU_7998 and tr_A0A2D0SCJ8_A0A2D0SCJ8_ICTPU_7998 are exactly identical! WARNING: Sequences tr_A0A2K5KLD2_A0A2K5KLD2_CERAT_9531 and tr_A0A2K6E3X2_A0A2K6E3X2_MACNE_9545 are exactly identical! WARNING: Duplicate sequences found: 41 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8.raxml.reduced.phy Alignment comprises 1 partitions and 586 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 586 / 586 Gaps: 26.73 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 1001 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 84 / 6720 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -949998.492205] Initial branch length optimization [00:00:04 -759940.558918] Model parameter optimization (eps = 10.000000) [00:00:39 -757080.094563] AUTODETECT spr round 1 (radius: 5) [00:02:17 -501149.487601] AUTODETECT spr round 2 (radius: 10) [00:04:01 -354754.982189] AUTODETECT spr round 3 (radius: 15) [00:05:57 -269666.780894] AUTODETECT spr round 4 (radius: 20) [00:08:10 -237273.753147] AUTODETECT spr round 5 (radius: 25) [00:10:31 -235397.207295] SPR radius for FAST iterations: 25 (autodetect) [00:10:31 -235397.207295] Model parameter optimization (eps = 3.000000) [00:10:56 -234651.443533] FAST spr round 1 (radius: 25) [00:12:48 -196883.587208] FAST spr round 2 (radius: 25) [00:14:20 -195060.589835] FAST spr round 3 (radius: 25) [00:15:47 -194968.013118] FAST spr round 4 (radius: 25) [00:17:08 -194955.821333] FAST spr round 5 (radius: 25) [00:18:26 -194954.042595] FAST spr round 6 (radius: 25) [00:19:43 -194954.042023] Model parameter optimization (eps = 1.000000) [00:20:05 -194931.324225] SLOW spr round 1 (radius: 5) [00:21:41 -194907.304671] SLOW spr round 2 (radius: 5) [00:23:18 -194903.138624] SLOW spr round 3 (radius: 5) [00:24:52 -194902.587121] SLOW spr round 4 (radius: 5) [00:26:25 -194902.586937] SLOW spr round 5 (radius: 10) [00:28:00 -194902.586296] SLOW spr round 6 (radius: 15) [00:30:36 -194902.145730] SLOW spr round 7 (radius: 5) [00:32:37 -194901.728037] SLOW spr round 8 (radius: 5) [00:34:24 -194901.727767] SLOW spr round 9 (radius: 10) [00:36:04 -194901.727724] SLOW spr round 10 (radius: 15) [00:38:35 -194901.727684] SLOW spr round 11 (radius: 20) [00:42:34 -194901.727647] SLOW spr round 12 (radius: 25) [00:47:49 -194901.727609] Model parameter optimization (eps = 0.100000) [00:48:02] ML tree search #1, logLikelihood: -194900.691176 [00:48:02 -951663.918108] Initial branch length optimization [00:48:05 -758325.829824] Model parameter optimization (eps = 10.000000) [00:48:55 -754791.342044] AUTODETECT spr round 1 (radius: 5) [00:50:33 -486005.849792] AUTODETECT spr round 2 (radius: 10) [00:52:15 -353518.544935] AUTODETECT spr round 3 (radius: 15) [00:54:05 -305278.811636] AUTODETECT spr round 4 (radius: 20) [00:56:09 -275216.701932] AUTODETECT spr round 5 (radius: 25) [00:58:26 -246807.232532] SPR radius for FAST iterations: 25 (autodetect) [00:58:26 -246807.232532] Model parameter optimization (eps = 3.000000) [00:58:49 -246197.331504] FAST spr round 1 (radius: 25) [01:00:43 -198163.069814] FAST spr round 2 (radius: 25) [01:02:24 -195304.684940] FAST spr round 3 (radius: 25) [01:03:59 -195065.864369] FAST spr round 4 (radius: 25) [01:05:24 -194973.564884] FAST spr round 5 (radius: 25) [01:06:44 -194961.460446] FAST spr round 6 (radius: 25) [01:08:00 -194961.460285] Model parameter optimization (eps = 1.000000) [01:08:11 -194946.618809] SLOW spr round 1 (radius: 5) [01:09:51 -194919.270283] SLOW spr round 2 (radius: 5) [01:11:28 -194918.970899] SLOW spr round 3 (radius: 5) [01:13:03 -194918.968871] SLOW spr round 4 (radius: 10) [01:14:41 -194918.895389] SLOW spr round 5 (radius: 15) [01:17:20 -194918.894991] SLOW spr round 6 (radius: 20) [01:21:16 -194918.894595] SLOW spr round 7 (radius: 25) [01:26:33 -194918.894234] Model parameter optimization (eps = 0.100000) [01:26:37] ML tree search #2, logLikelihood: -194918.855492 [01:26:37 -947681.919416] Initial branch length optimization [01:26:41 -756732.015224] Model parameter optimization (eps = 10.000000) [01:27:17 -753932.004908] AUTODETECT spr round 1 (radius: 5) [01:28:54 -491688.119806] AUTODETECT spr round 2 (radius: 10) [01:30:38 -355776.028403] AUTODETECT spr round 3 (radius: 15) [01:32:29 -293144.278714] AUTODETECT spr round 4 (radius: 20) [01:34:39 -248598.540830] AUTODETECT spr round 5 (radius: 25) [01:37:03 -242924.601142] SPR radius for FAST iterations: 25 (autodetect) [01:37:03 -242924.601142] Model parameter optimization (eps = 3.000000) [01:37:29 -242209.624509] FAST spr round 1 (radius: 25) [01:39:32 -199180.842400] FAST spr round 2 (radius: 25) [01:41:17 -195142.075414] FAST spr round 3 (radius: 25) [01:42:44 -194987.100312] FAST spr round 4 (radius: 25) [01:44:04 -194976.522179] FAST spr round 5 (radius: 25) [01:45:24 -194975.307797] FAST spr round 6 (radius: 25) [01:46:39 -194974.461703] FAST spr round 7 (radius: 25) [01:47:54 -194974.461573] Model parameter optimization (eps = 1.000000) [01:48:12 -194964.218790] SLOW spr round 1 (radius: 5) [01:49:50 -194918.159654] SLOW spr round 2 (radius: 5) [01:51:26 -194912.688033] SLOW spr round 3 (radius: 5) [01:53:02 -194911.191185] SLOW spr round 4 (radius: 5) [01:54:36 -194911.190456] SLOW spr round 5 (radius: 10) [01:56:15 -194903.543796] SLOW spr round 6 (radius: 5) [01:58:11 -194897.638587] SLOW spr round 7 (radius: 5) [01:59:55 -194897.638014] SLOW spr round 8 (radius: 10) [02:01:35 -194897.637888] SLOW spr round 9 (radius: 15) [02:04:09 -194895.517839] SLOW spr round 10 (radius: 5) [02:06:09 -194894.481014] SLOW spr round 11 (radius: 5) [02:07:54 -194894.480876] SLOW spr round 12 (radius: 10) [02:09:35 -194894.480732] SLOW spr round 13 (radius: 15) [02:12:06 -194894.480632] SLOW spr round 14 (radius: 20) [02:16:13 -194894.480533] SLOW spr round 15 (radius: 25) [02:21:41 -194894.480433] Model parameter optimization (eps = 0.100000) [02:21:55] ML tree search #3, logLikelihood: -194893.228563 [02:21:55 -951529.500480] Initial branch length optimization [02:21:59 -757353.507225] Model parameter optimization (eps = 10.000000) [02:22:51 -754565.905783] AUTODETECT spr round 1 (radius: 5) [02:24:27 -495040.246180] AUTODETECT spr round 2 (radius: 10) [02:26:09 -349254.343244] AUTODETECT spr round 3 (radius: 15) [02:28:04 -285116.744890] AUTODETECT spr round 4 (radius: 20) [02:30:08 -233545.356622] AUTODETECT spr round 5 (radius: 25) [02:32:42 -230415.464195] SPR radius for FAST iterations: 25 (autodetect) [02:32:42 -230415.464195] Model parameter optimization (eps = 3.000000) [02:33:08 -229816.645237] FAST spr round 1 (radius: 25) [02:35:05 -196245.254095] FAST spr round 2 (radius: 25) [02:36:44 -195026.145810] FAST spr round 3 (radius: 25) [02:38:11 -194996.547494] FAST spr round 4 (radius: 25) [02:39:33 -194990.211546] FAST spr round 5 (radius: 25) [02:40:53 -194988.107749] FAST spr round 6 (radius: 25) [02:42:11 -194987.109611] FAST spr round 7 (radius: 25) [02:43:29 -194987.108223] Model parameter optimization (eps = 1.000000) [02:43:39 -194982.149976] SLOW spr round 1 (radius: 5) [02:45:19 -194917.787588] SLOW spr round 2 (radius: 5) [02:46:56 -194916.983047] SLOW spr round 3 (radius: 5) [02:48:33 -194916.982114] SLOW spr round 4 (radius: 10) [02:50:13 -194916.537753] SLOW spr round 5 (radius: 5) [02:52:12 -194915.517225] SLOW spr round 6 (radius: 5) [02:53:59 -194915.516472] SLOW spr round 7 (radius: 10) [02:55:41 -194915.516367] SLOW spr round 8 (radius: 15) [02:58:16 -194915.516292] SLOW spr round 9 (radius: 20) [03:02:17 -194915.516220] SLOW spr round 10 (radius: 25) [03:07:36 -194915.516147] Model parameter optimization (eps = 0.100000) [03:07:47] ML tree search #4, logLikelihood: -194914.300403 [03:07:47 -953770.431595] Initial branch length optimization [03:07:50 -757852.583470] Model parameter optimization (eps = 10.000000) [03:08:33 -754945.901716] AUTODETECT spr round 1 (radius: 5) [03:10:11 -507194.410621] AUTODETECT spr round 2 (radius: 10) [03:11:57 -367252.791831] AUTODETECT spr round 3 (radius: 15) [03:13:48 -278173.963490] AUTODETECT spr round 4 (radius: 20) [03:15:50 -237822.416756] AUTODETECT spr round 5 (radius: 25) [03:18:10 -231328.349543] SPR radius for FAST iterations: 25 (autodetect) [03:18:10 -231328.349543] Model parameter optimization (eps = 3.000000) [03:18:34 -230780.935020] FAST spr round 1 (radius: 25) [03:20:37 -196992.601017] FAST spr round 2 (radius: 25) [03:22:19 -195172.081019] FAST spr round 3 (radius: 25) [03:23:53 -195001.649691] FAST spr round 4 (radius: 25) [03:25:17 -194982.734429] FAST spr round 5 (radius: 25) [03:26:36 -194972.126052] FAST spr round 6 (radius: 25) [03:27:54 -194972.123121] Model parameter optimization (eps = 1.000000) [03:28:05 -194967.931862] SLOW spr round 1 (radius: 5) [03:29:43 -194917.140881] SLOW spr round 2 (radius: 5) [03:31:21 -194915.178979] SLOW spr round 3 (radius: 5) [03:32:56 -194915.178673] SLOW spr round 4 (radius: 10) [03:34:35 -194915.178552] SLOW spr round 5 (radius: 15) [03:37:14 -194915.178445] SLOW spr round 6 (radius: 20) [03:41:17 -194915.178424] SLOW spr round 7 (radius: 25) [03:46:42 -194915.178404] Model parameter optimization (eps = 0.100000) [03:46:53] ML tree search #5, logLikelihood: -194914.881125 [03:46:53 -949531.639694] Initial branch length optimization [03:46:56 -755128.690504] Model parameter optimization (eps = 10.000000) [03:47:37 -752243.706907] AUTODETECT spr round 1 (radius: 5) [03:49:18 -511232.886711] AUTODETECT spr round 2 (radius: 10) [03:51:05 -369102.178069] AUTODETECT spr round 3 (radius: 15) [03:52:56 -315001.510968] AUTODETECT spr round 4 (radius: 20) [03:55:01 -271670.823682] AUTODETECT spr round 5 (radius: 25) [03:57:13 -241836.671313] SPR radius for FAST iterations: 25 (autodetect) [03:57:13 -241836.671313] Model parameter optimization (eps = 3.000000) [03:57:39 -241122.831104] FAST spr round 1 (radius: 25) [03:59:45 -197577.109765] FAST spr round 2 (radius: 25) [04:01:22 -195208.565621] FAST spr round 3 (radius: 25) [04:02:48 -195028.430684] FAST spr round 4 (radius: 25) [04:04:08 -195023.794770] FAST spr round 5 (radius: 25) [04:05:27 -195023.794352] Model parameter optimization (eps = 1.000000) [04:05:43 -194980.424631] SLOW spr round 1 (radius: 5) [04:07:20 -194929.079264] SLOW spr round 2 (radius: 5) [04:08:57 -194919.921820] SLOW spr round 3 (radius: 5) [04:10:33 -194919.685547] SLOW spr round 4 (radius: 5) [04:12:08 -194919.682866] SLOW spr round 5 (radius: 10) [04:13:45 -194917.589119] SLOW spr round 6 (radius: 5) [04:15:43 -194917.399879] SLOW spr round 7 (radius: 5) [04:17:28 -194915.515516] SLOW spr round 8 (radius: 5) [04:19:06 -194915.512574] SLOW spr round 9 (radius: 10) [04:20:44 -194915.512455] SLOW spr round 10 (radius: 15) [04:23:22 -194912.166397] SLOW spr round 11 (radius: 5) [04:25:24 -194911.736996] SLOW spr round 12 (radius: 5) [04:27:12 -194911.736784] SLOW spr round 13 (radius: 10) [04:28:55 -194911.736679] SLOW spr round 14 (radius: 15) [04:31:28 -194911.736578] SLOW spr round 15 (radius: 20) [04:35:31 -194911.736476] SLOW spr round 16 (radius: 25) [04:40:52 -194911.736379] Model parameter optimization (eps = 0.100000) [04:40:58] ML tree search #6, logLikelihood: -194911.727109 [04:40:58 -954209.142308] Initial branch length optimization [04:41:02 -757173.321209] Model parameter optimization (eps = 10.000000) [04:41:39 -754365.160042] AUTODETECT spr round 1 (radius: 5) [04:43:17 -517519.906662] AUTODETECT spr round 2 (radius: 10) [04:45:02 -345284.012049] AUTODETECT spr round 3 (radius: 15) [04:46:51 -270172.191137] AUTODETECT spr round 4 (radius: 20) [04:48:51 -243626.157725] AUTODETECT spr round 5 (radius: 25) [04:51:08 -233666.673376] SPR radius for FAST iterations: 25 (autodetect) [04:51:08 -233666.673376] Model parameter optimization (eps = 3.000000) [04:51:51 -232870.155079] FAST spr round 1 (radius: 25) [04:53:52 -197489.827208] FAST spr round 2 (radius: 25) [04:55:34 -195126.218659] FAST spr round 3 (radius: 25) [04:57:07 -194985.887890] FAST spr round 4 (radius: 25) [04:58:30 -194978.150307] FAST spr round 5 (radius: 25) [04:59:48 -194973.957985] FAST spr round 6 (radius: 25) [05:01:06 -194973.956759] Model parameter optimization (eps = 1.000000) [05:01:20 -194943.671529] SLOW spr round 1 (radius: 5) [05:02:57 -194910.801001] SLOW spr round 2 (radius: 5) [05:04:35 -194908.839275] SLOW spr round 3 (radius: 5) [05:06:09 -194908.838850] SLOW spr round 4 (radius: 10) [05:07:47 -194908.838445] SLOW spr round 5 (radius: 15) [05:10:30 -194908.245866] SLOW spr round 6 (radius: 5) [05:12:33 -194907.741981] SLOW spr round 7 (radius: 5) [05:14:23 -194907.741522] SLOW spr round 8 (radius: 10) [05:16:09 -194907.741173] SLOW spr round 9 (radius: 15) [05:18:53 -194907.740825] SLOW spr round 10 (radius: 20) [05:23:17 -194907.740477] SLOW spr round 11 (radius: 25) [05:29:08 -194907.740129] Model parameter optimization (eps = 0.100000) [05:29:22] ML tree search #7, logLikelihood: -194906.706276 [05:29:22 -949715.827207] Initial branch length optimization [05:29:25 -759978.228891] Model parameter optimization (eps = 10.000000) [05:29:54 -757174.663010] AUTODETECT spr round 1 (radius: 5) [05:31:31 -507405.459864] AUTODETECT spr round 2 (radius: 10) [05:33:15 -350397.634449] AUTODETECT spr round 3 (radius: 15) [05:35:06 -268637.638109] AUTODETECT spr round 4 (radius: 20) [05:37:26 -238463.876346] AUTODETECT spr round 5 (radius: 25) [05:39:49 -234417.196396] SPR radius for FAST iterations: 25 (autodetect) [05:39:49 -234417.196396] Model parameter optimization (eps = 3.000000) [05:40:12 -233837.163838] FAST spr round 1 (radius: 25) [05:42:11 -196871.089279] FAST spr round 2 (radius: 25) [05:43:51 -195113.748633] FAST spr round 3 (radius: 25) [05:45:20 -194996.883115] FAST spr round 4 (radius: 25) [05:46:43 -194981.424842] FAST spr round 5 (radius: 25) [05:48:01 -194981.424094] Model parameter optimization (eps = 1.000000) [05:48:13 -194963.903461] SLOW spr round 1 (radius: 5) [05:49:53 -194940.834639] SLOW spr round 2 (radius: 5) [05:51:30 -194940.830620] SLOW spr round 3 (radius: 10) [05:53:09 -194932.565703] SLOW spr round 4 (radius: 5) [05:55:07 -194927.666305] SLOW spr round 5 (radius: 5) [05:56:53 -194927.666225] SLOW spr round 6 (radius: 10) [05:58:35 -194923.122032] SLOW spr round 7 (radius: 5) [06:00:31 -194919.050269] SLOW spr round 8 (radius: 5) [06:02:14 -194917.719588] SLOW spr round 9 (radius: 5) [06:03:52 -194917.719224] SLOW spr round 10 (radius: 10) [06:05:30 -194917.719160] SLOW spr round 11 (radius: 15) [06:08:05 -194917.719115] SLOW spr round 12 (radius: 20) [06:12:07 -194917.719069] SLOW spr round 13 (radius: 25) [06:17:28 -194917.719024] Model parameter optimization (eps = 0.100000) [06:17:31] ML tree search #8, logLikelihood: -194917.706201 [06:17:31 -951776.043318] Initial branch length optimization [06:17:36 -753032.856090] Model parameter optimization (eps = 10.000000) [06:18:20 -750398.507700] AUTODETECT spr round 1 (radius: 5) [06:19:57 -502140.120697] AUTODETECT spr round 2 (radius: 10) [06:21:40 -362504.329976] AUTODETECT spr round 3 (radius: 15) [06:23:34 -265950.440811] AUTODETECT spr round 4 (radius: 20) [06:25:43 -235042.122746] AUTODETECT spr round 5 (radius: 25) [06:28:22 -228708.121501] SPR radius for FAST iterations: 25 (autodetect) [06:28:22 -228708.121501] Model parameter optimization (eps = 3.000000) [06:28:50 -227996.281678] FAST spr round 1 (radius: 25) [06:30:48 -196292.253377] FAST spr round 2 (radius: 25) [06:32:27 -195106.851443] FAST spr round 3 (radius: 25) [06:33:56 -194978.938381] FAST spr round 4 (radius: 25) [06:35:18 -194963.921049] FAST spr round 5 (radius: 25) [06:36:34 -194963.918348] Model parameter optimization (eps = 1.000000) [06:36:50 -194954.059694] SLOW spr round 1 (radius: 5) [06:38:29 -194912.263642] SLOW spr round 2 (radius: 5) [06:40:07 -194898.500151] SLOW spr round 3 (radius: 5) [06:41:41 -194897.379417] SLOW spr round 4 (radius: 5) [06:43:14 -194897.379199] SLOW spr round 5 (radius: 10) [06:44:49 -194897.379084] SLOW spr round 6 (radius: 15) [06:47:28 -194897.378937] SLOW spr round 7 (radius: 20) [06:51:32 -194897.378876] SLOW spr round 8 (radius: 25) [06:56:57 -194897.378816] Model parameter optimization (eps = 0.100000) [06:57:04] ML tree search #9, logLikelihood: -194897.070789 [06:57:04 -946714.235063] Initial branch length optimization [06:57:07 -758929.861543] Model parameter optimization (eps = 10.000000) [06:57:44 -756173.354589] AUTODETECT spr round 1 (radius: 5) [06:59:21 -510206.800223] AUTODETECT spr round 2 (radius: 10) [07:01:03 -371886.077701] AUTODETECT spr round 3 (radius: 15) [07:02:51 -294206.034256] AUTODETECT spr round 4 (radius: 20) [07:04:59 -250415.949699] AUTODETECT spr round 5 (radius: 25) [07:07:24 -238332.293371] SPR radius for FAST iterations: 25 (autodetect) [07:07:24 -238332.293371] Model parameter optimization (eps = 3.000000) [07:07:45 -237844.160813] FAST spr round 1 (radius: 25) [07:09:43 -198131.805335] FAST spr round 2 (radius: 25) [07:11:17 -195199.399669] FAST spr round 3 (radius: 25) [07:12:44 -194969.584499] FAST spr round 4 (radius: 25) [07:14:05 -194955.379481] FAST spr round 5 (radius: 25) [07:15:23 -194950.064820] FAST spr round 6 (radius: 25) [07:16:40 -194950.064673] Model parameter optimization (eps = 1.000000) [07:16:51 -194944.347919] SLOW spr round 1 (radius: 5) [07:18:28 -194914.996689] SLOW spr round 2 (radius: 5) [07:20:04 -194914.637240] SLOW spr round 3 (radius: 5) [07:21:38 -194914.637025] SLOW spr round 4 (radius: 10) [07:23:15 -194912.605416] SLOW spr round 5 (radius: 5) [07:25:11 -194912.084271] SLOW spr round 6 (radius: 5) [07:26:55 -194912.084201] SLOW spr round 7 (radius: 10) [07:28:37 -194907.779857] SLOW spr round 8 (radius: 5) [07:30:32 -194903.682487] SLOW spr round 9 (radius: 5) [07:32:15 -194903.682194] SLOW spr round 10 (radius: 10) [07:33:56 -194903.682129] SLOW spr round 11 (radius: 15) [07:36:33 -194903.383757] SLOW spr round 12 (radius: 5) [07:38:35 -194902.955280] SLOW spr round 13 (radius: 5) [07:40:23 -194902.955076] SLOW spr round 14 (radius: 10) [07:42:04 -194902.955009] SLOW spr round 15 (radius: 15) [07:44:39 -194902.954938] SLOW spr round 16 (radius: 20) [07:48:42 -194902.954867] SLOW spr round 17 (radius: 25) [07:54:04 -194902.954796] Model parameter optimization (eps = 0.100000) [07:54:10] ML tree search #10, logLikelihood: -194902.897223 [07:54:10 -952036.561015] Initial branch length optimization [07:54:13 -760992.257699] Model parameter optimization (eps = 10.000000) [07:54:56 -758217.218050] AUTODETECT spr round 1 (radius: 5) [07:56:32 -506767.893758] AUTODETECT spr round 2 (radius: 10) [07:58:14 -346500.676411] AUTODETECT spr round 3 (radius: 15) [08:00:09 -280218.456261] AUTODETECT spr round 4 (radius: 20) [08:02:23 -239100.478033] AUTODETECT spr round 5 (radius: 25) [08:04:47 -230058.310255] SPR radius for FAST iterations: 25 (autodetect) [08:04:47 -230058.310255] Model parameter optimization (eps = 3.000000) [08:05:07 -229443.620211] FAST spr round 1 (radius: 25) [08:07:05 -196765.413150] FAST spr round 2 (radius: 25) [08:08:42 -195056.511911] FAST spr round 3 (radius: 25) [08:10:12 -194980.732195] FAST spr round 4 (radius: 25) [08:11:30 -194977.225181] FAST spr round 5 (radius: 25) [08:12:46 -194975.346281] FAST spr round 6 (radius: 25) [08:14:00 -194975.345811] Model parameter optimization (eps = 1.000000) [08:14:15 -194958.890153] SLOW spr round 1 (radius: 5) [08:15:52 -194921.131870] SLOW spr round 2 (radius: 5) [08:17:28 -194917.362784] SLOW spr round 3 (radius: 5) [08:19:06 -194910.502335] SLOW spr round 4 (radius: 5) [08:20:43 -194908.361895] SLOW spr round 5 (radius: 5) [08:22:18 -194906.991044] SLOW spr round 6 (radius: 5) [08:23:50 -194906.988914] SLOW spr round 7 (radius: 10) [08:25:27 -194906.988181] SLOW spr round 8 (radius: 15) [08:28:06 -194906.987762] SLOW spr round 9 (radius: 20) [08:32:05 -194906.987427] SLOW spr round 10 (radius: 25) [08:37:26 -194906.987110] Model parameter optimization (eps = 0.100000) [08:37:34] ML tree search #11, logLikelihood: -194906.837806 [08:37:35 -948484.817808] Initial branch length optimization [08:37:38 -755305.826529] Model parameter optimization (eps = 10.000000) [08:38:21 -752239.552877] AUTODETECT spr round 1 (radius: 5) [08:39:56 -496285.652852] AUTODETECT spr round 2 (radius: 10) [08:41:39 -342395.353839] AUTODETECT spr round 3 (radius: 15) [08:43:34 -269796.557110] AUTODETECT spr round 4 (radius: 20) [08:45:40 -244386.686807] AUTODETECT spr round 5 (radius: 25) [08:48:08 -229467.521209] SPR radius for FAST iterations: 25 (autodetect) [08:48:08 -229467.521209] Model parameter optimization (eps = 3.000000) [08:48:32 -229021.000454] FAST spr round 1 (radius: 25) [08:50:30 -197413.561707] FAST spr round 2 (radius: 25) [08:52:08 -195103.032345] FAST spr round 3 (radius: 25) [08:53:38 -194981.110428] FAST spr round 4 (radius: 25) [08:54:58 -194972.182725] FAST spr round 5 (radius: 25) [08:56:14 -194972.181614] Model parameter optimization (eps = 1.000000) [08:56:32 -194951.723254] SLOW spr round 1 (radius: 5) [08:58:10 -194905.634159] SLOW spr round 2 (radius: 5) [08:59:47 -194902.605691] SLOW spr round 3 (radius: 5) [09:01:20 -194902.605314] SLOW spr round 4 (radius: 10) [09:02:55 -194902.604901] SLOW spr round 5 (radius: 15) [09:05:29 -194902.604549] SLOW spr round 6 (radius: 20) [09:09:10 -194902.604199] SLOW spr round 7 (radius: 25) [09:14:10 -194902.603850] Model parameter optimization (eps = 0.100000) [09:14:19] ML tree search #12, logLikelihood: -194902.408121 [09:14:19 -959266.808199] Initial branch length optimization [09:14:22 -763441.333137] Model parameter optimization (eps = 10.000000) [09:14:54 -760666.525951] AUTODETECT spr round 1 (radius: 5) [09:16:29 -506951.594064] AUTODETECT spr round 2 (radius: 10) [09:18:14 -356256.938679] AUTODETECT spr round 3 (radius: 15) [09:20:21 -278647.102253] AUTODETECT spr round 4 (radius: 20) [09:22:35 -249422.352687] AUTODETECT spr round 5 (radius: 25) [09:25:03 -229996.575741] SPR radius for FAST iterations: 25 (autodetect) [09:25:03 -229996.575741] Model parameter optimization (eps = 3.000000) [09:25:28 -229281.825685] FAST spr round 1 (radius: 25) [09:27:38 -196826.350719] FAST spr round 2 (radius: 25) [09:29:26 -195075.822516] FAST spr round 3 (radius: 25) [09:31:05 -194959.731870] FAST spr round 4 (radius: 25) [09:32:35 -194946.447241] FAST spr round 5 (radius: 25) [09:34:03 -194944.737752] FAST spr round 6 (radius: 25) [09:35:29 -194944.737473] Model parameter optimization (eps = 1.000000) [09:35:42 -194925.219941] SLOW spr round 1 (radius: 5) [09:37:30 -194899.102411] SLOW spr round 2 (radius: 5) [09:39:17 -194898.760935] SLOW spr round 3 (radius: 5) [09:41:03 -194898.754179] SLOW spr round 4 (radius: 10) [09:42:50 -194898.753731] SLOW spr round 5 (radius: 15) [09:45:49 -194898.753332] SLOW spr round 6 (radius: 20) [09:50:13 -194898.752937] SLOW spr round 7 (radius: 25) [09:56:09 -194898.752543] Model parameter optimization (eps = 0.100000) [09:56:19] ML tree search #13, logLikelihood: -194898.638277 [09:56:19 -952857.118444] Initial branch length optimization [09:56:23 -759740.688386] Model parameter optimization (eps = 10.000000) [09:57:09 -756813.200645] AUTODETECT spr round 1 (radius: 5) [09:58:58 -510400.496988] AUTODETECT spr round 2 (radius: 10) [10:00:55 -353674.395289] AUTODETECT spr round 3 (radius: 15) [10:02:57 -273404.497562] AUTODETECT spr round 4 (radius: 20) [10:05:26 -252037.423129] AUTODETECT spr round 5 (radius: 25) [10:07:55 -236476.379224] SPR radius for FAST iterations: 25 (autodetect) [10:07:55 -236476.379224] Model parameter optimization (eps = 3.000000) [10:08:17 -235926.089054] FAST spr round 1 (radius: 25) [10:10:41 -197960.086675] FAST spr round 2 (radius: 25) [10:12:38 -195289.608583] FAST spr round 3 (radius: 25) [10:14:18 -195014.269477] FAST spr round 4 (radius: 25) [10:15:54 -194956.638063] FAST spr round 5 (radius: 25) [10:17:24 -194954.390311] FAST spr round 6 (radius: 25) [10:18:53 -194954.390016] Model parameter optimization (eps = 1.000000) [10:19:08 -194950.406371] SLOW spr round 1 (radius: 5) [10:21:01 -194919.240114] SLOW spr round 2 (radius: 5) [10:22:54 -194910.402400] SLOW spr round 3 (radius: 5) [10:24:42 -194905.725341] SLOW spr round 4 (radius: 5) [10:26:28 -194905.723883] SLOW spr round 5 (radius: 10) [10:28:17 -194903.506214] SLOW spr round 6 (radius: 5) [10:30:28 -194903.505445] SLOW spr round 7 (radius: 10) [10:32:30 -194903.505335] SLOW spr round 8 (radius: 15) [10:35:13 -194903.505250] SLOW spr round 9 (radius: 20) [10:39:27 -194903.505169] SLOW spr round 10 (radius: 25) [10:45:19 -194903.505094] Model parameter optimization (eps = 0.100000) [10:45:28] ML tree search #14, logLikelihood: -194903.438814 [10:45:28 -954025.024079] Initial branch length optimization [10:45:32 -761399.569855] Model parameter optimization (eps = 10.000000) [10:46:13 -758375.589264] AUTODETECT spr round 1 (radius: 5) [10:48:05 -507809.955188] AUTODETECT spr round 2 (radius: 10) [10:50:03 -361974.576959] AUTODETECT spr round 3 (radius: 15) [10:52:13 -271183.987299] AUTODETECT spr round 4 (radius: 20) [10:54:29 -232222.674033] AUTODETECT spr round 5 (radius: 25) [10:57:21 -224871.299422] SPR radius for FAST iterations: 25 (autodetect) [10:57:21 -224871.299422] Model parameter optimization (eps = 3.000000) [10:57:47 -224319.207290] FAST spr round 1 (radius: 25) [11:00:04 -196535.808645] FAST spr round 2 (radius: 25) [11:01:59 -195161.015813] FAST spr round 3 (radius: 25) [11:03:42 -195035.603218] FAST spr round 4 (radius: 25) [11:05:16 -194998.652106] FAST spr round 5 (radius: 25) [11:06:44 -194993.608537] FAST spr round 6 (radius: 25) [11:08:10 -194993.608191] Model parameter optimization (eps = 1.000000) [11:08:26 -194973.537702] SLOW spr round 1 (radius: 5) [11:10:16 -194920.177824] SLOW spr round 2 (radius: 5) [11:12:05 -194918.508783] SLOW spr round 3 (radius: 5) [11:13:52 -194918.507055] SLOW spr round 4 (radius: 10) [11:15:41 -194912.638713] SLOW spr round 5 (radius: 5) [11:17:56 -194910.301853] SLOW spr round 6 (radius: 5) [11:19:56 -194910.062242] SLOW spr round 7 (radius: 5) [11:21:47 -194910.058729] SLOW spr round 8 (radius: 10) [11:23:38 -194904.445123] SLOW spr round 9 (radius: 5) [11:25:49 -194904.444665] SLOW spr round 10 (radius: 10) [11:27:52 -194904.444320] SLOW spr round 11 (radius: 15) [11:30:41 -194904.444008] SLOW spr round 12 (radius: 20) [11:35:13 -194904.443696] SLOW spr round 13 (radius: 25) [11:41:21 -194904.443384] Model parameter optimization (eps = 0.100000) [11:41:34] ML tree search #15, logLikelihood: -194904.188720 [11:41:34 -956516.892795] Initial branch length optimization [11:41:38 -761917.068011] Model parameter optimization (eps = 10.000000) [11:42:19 -759164.783154] AUTODETECT spr round 1 (radius: 5) [11:44:13 -527376.428017] AUTODETECT spr round 2 (radius: 10) [11:46:15 -369266.355054] AUTODETECT spr round 3 (radius: 15) [11:48:26 -294460.290695] AUTODETECT spr round 4 (radius: 20) [11:50:59 -245624.781213] AUTODETECT spr round 5 (radius: 25) [11:54:21 -237052.885306] SPR radius for FAST iterations: 25 (autodetect) [11:54:21 -237052.885306] Model parameter optimization (eps = 3.000000) [11:54:47 -236237.318738] FAST spr round 1 (radius: 25) [11:56:58 -197276.467112] FAST spr round 2 (radius: 25) [11:58:46 -195176.122869] FAST spr round 3 (radius: 25) [12:00:25 -194981.700630] FAST spr round 4 (radius: 25) [12:01:59 -194929.320561] FAST spr round 5 (radius: 25) [12:03:31 -194920.393875] FAST spr round 6 (radius: 25) [12:04:59 -194920.392206] Model parameter optimization (eps = 1.000000) [12:05:11 -194918.008265] SLOW spr round 1 (radius: 5) [12:07:03 -194893.179958] SLOW spr round 2 (radius: 5) [12:08:55 -194890.353687] SLOW spr round 3 (radius: 5) [12:10:44 -194890.353167] SLOW spr round 4 (radius: 10) [12:12:34 -194890.348521] SLOW spr round 5 (radius: 15) [12:15:37 -194890.348164] SLOW spr round 6 (radius: 20) [12:20:15 -194890.347809] SLOW spr round 7 (radius: 25) [12:26:28 -194890.347453] Model parameter optimization (eps = 0.100000) [12:26:32] ML tree search #16, logLikelihood: -194890.329603 [12:26:32 -946879.269584] Initial branch length optimization [12:26:36 -756618.393326] Model parameter optimization (eps = 10.000000) [12:27:17 -753697.794970] AUTODETECT spr round 1 (radius: 5) [12:29:07 -496164.436347] AUTODETECT spr round 2 (radius: 10) [12:31:03 -360168.920963] AUTODETECT spr round 3 (radius: 15) [12:33:06 -302114.378542] AUTODETECT spr round 4 (radius: 20) [12:35:21 -269645.798052] AUTODETECT spr round 5 (radius: 25) [12:37:51 -239656.967663] SPR radius for FAST iterations: 25 (autodetect) [12:37:51 -239656.967663] Model parameter optimization (eps = 3.000000) [12:38:15 -238963.606052] FAST spr round 1 (radius: 25) [12:40:30 -196434.173711] FAST spr round 2 (radius: 25) [12:42:19 -195106.413264] FAST spr round 3 (radius: 25) [12:44:01 -195019.766432] FAST spr round 4 (radius: 25) [12:45:35 -194996.776714] FAST spr round 5 (radius: 25) [12:47:03 -194991.496415] FAST spr round 6 (radius: 25) [12:48:31 -194989.528472] FAST spr round 7 (radius: 25) [12:49:58 -194989.528178] Model parameter optimization (eps = 1.000000) [12:50:28 -194984.457798] SLOW spr round 1 (radius: 5) [12:52:17 -194926.528305] SLOW spr round 2 (radius: 5) [12:54:07 -194909.901674] SLOW spr round 3 (radius: 5) [12:55:54 -194909.777735] SLOW spr round 4 (radius: 5) [12:57:40 -194909.777111] SLOW spr round 5 (radius: 10) [12:59:29 -194909.776957] SLOW spr round 6 (radius: 15) [13:02:28 -194909.625474] SLOW spr round 7 (radius: 5) [13:04:46 -194909.205225] SLOW spr round 8 (radius: 5) [13:06:47 -194909.205014] SLOW spr round 9 (radius: 10) [13:08:43 -194909.204983] SLOW spr round 10 (radius: 15) [13:11:35 -194909.204956] SLOW spr round 11 (radius: 20) [13:16:12 -194909.204928] SLOW spr round 12 (radius: 25) [13:22:20 -194909.204901] Model parameter optimization (eps = 0.100000) [13:22:30] ML tree search #17, logLikelihood: -194908.436475 [13:22:31 -954110.761766] Initial branch length optimization [13:22:34 -760587.571830] Model parameter optimization (eps = 10.000000) [13:23:13 -757816.840247] AUTODETECT spr round 1 (radius: 5) [13:25:01 -513859.304807] AUTODETECT spr round 2 (radius: 10) [13:27:01 -372246.793085] AUTODETECT spr round 3 (radius: 15) [13:29:07 -297239.457035] AUTODETECT spr round 4 (radius: 20) [13:31:26 -252304.659064] AUTODETECT spr round 5 (radius: 25) [13:33:56 -236360.121025] SPR radius for FAST iterations: 25 (autodetect) [13:33:56 -236360.121025] Model parameter optimization (eps = 3.000000) [13:34:29 -235719.901851] FAST spr round 1 (radius: 25) [13:36:47 -198614.409777] FAST spr round 2 (radius: 25) [13:38:41 -195088.642008] FAST spr round 3 (radius: 25) [13:40:24 -194962.553155] FAST spr round 4 (radius: 25) [13:41:57 -194957.252548] FAST spr round 5 (radius: 25) [13:43:25 -194957.251571] Model parameter optimization (eps = 1.000000) [13:43:38 -194951.348691] SLOW spr round 1 (radius: 5) [13:45:32 -194913.404200] SLOW spr round 2 (radius: 5) [13:47:22 -194911.517985] SLOW spr round 3 (radius: 5) [13:49:10 -194911.517323] SLOW spr round 4 (radius: 10) [13:51:00 -194909.241480] SLOW spr round 5 (radius: 5) [13:53:12 -194909.241000] SLOW spr round 6 (radius: 10) [13:55:17 -194909.240531] SLOW spr round 7 (radius: 15) [13:58:10 -194907.012126] SLOW spr round 8 (radius: 5) [14:00:28 -194907.011706] SLOW spr round 9 (radius: 10) [14:02:37 -194907.011286] SLOW spr round 10 (radius: 15) [14:05:28 -194907.010914] SLOW spr round 11 (radius: 20) [14:10:11 -194907.010599] SLOW spr round 12 (radius: 25) [14:16:24 -194907.010285] Model parameter optimization (eps = 0.100000) [14:16:33] ML tree search #18, logLikelihood: -194906.906689 [14:16:33 -960215.323212] Initial branch length optimization [14:16:37 -761734.166437] Model parameter optimization (eps = 10.000000) [14:17:20 -758896.933901] AUTODETECT spr round 1 (radius: 5) [14:19:15 -497540.361090] AUTODETECT spr round 2 (radius: 10) [14:21:15 -340053.620172] AUTODETECT spr round 3 (radius: 15) [14:23:22 -251987.368115] AUTODETECT spr round 4 (radius: 20) [14:25:53 -227612.127123] AUTODETECT spr round 5 (radius: 25) [14:29:13 -221867.853414] SPR radius for FAST iterations: 25 (autodetect) [14:29:13 -221867.853414] Model parameter optimization (eps = 3.000000) [14:29:42 -221214.852365] FAST spr round 1 (radius: 25) [14:31:56 -195845.394177] FAST spr round 2 (radius: 25) [14:33:43 -195024.049278] FAST spr round 3 (radius: 25) [14:35:23 -194957.711849] FAST spr round 4 (radius: 25) [14:36:55 -194945.259786] FAST spr round 5 (radius: 25) [14:38:25 -194942.283182] FAST spr round 6 (radius: 25) [14:39:53 -194942.283066] Model parameter optimization (eps = 1.000000) [14:40:03 -194938.994464] SLOW spr round 1 (radius: 5) [14:41:55 -194905.280674] SLOW spr round 2 (radius: 5) [14:43:47 -194904.499141] SLOW spr round 3 (radius: 5) [14:45:35 -194904.498424] SLOW spr round 4 (radius: 10) [14:47:24 -194904.498342] SLOW spr round 5 (radius: 15) [14:50:21 -194904.498295] SLOW spr round 6 (radius: 20) [14:54:45 -194904.498251] SLOW spr round 7 (radius: 25) [15:00:44 -194904.498208] Model parameter optimization (eps = 0.100000) [15:00:53] ML tree search #19, logLikelihood: -194904.365855 [15:00:53 -957471.762660] Initial branch length optimization [15:00:56 -761947.220951] Model parameter optimization (eps = 10.000000) [15:01:43 -758913.396656] AUTODETECT spr round 1 (radius: 5) [15:03:36 -490787.114740] AUTODETECT spr round 2 (radius: 10) [15:05:33 -360968.152896] AUTODETECT spr round 3 (radius: 15) [15:07:45 -281785.370603] AUTODETECT spr round 4 (radius: 20) [15:10:17 -250717.766854] AUTODETECT spr round 5 (radius: 25) [15:13:09 -240435.842307] SPR radius for FAST iterations: 25 (autodetect) [15:13:09 -240435.842307] Model parameter optimization (eps = 3.000000) [15:13:38 -239858.277049] FAST spr round 1 (radius: 25) [15:15:54 -197959.908723] FAST spr round 2 (radius: 25) [15:17:52 -195160.656266] FAST spr round 3 (radius: 25) [15:19:32 -194986.066124] FAST spr round 4 (radius: 25) [15:21:07 -194958.588342] FAST spr round 5 (radius: 25) [15:22:36 -194958.588210] Model parameter optimization (eps = 1.000000) [15:22:48 -194956.162718] SLOW spr round 1 (radius: 5) [15:24:45 -194914.511816] SLOW spr round 2 (radius: 5) [15:26:36 -194913.471455] SLOW spr round 3 (radius: 5) [15:28:23 -194913.470725] SLOW spr round 4 (radius: 10) [15:30:14 -194913.470623] SLOW spr round 5 (radius: 15) [15:33:17 -194913.470526] SLOW spr round 6 (radius: 20) [15:37:55 -194913.470431] SLOW spr round 7 (radius: 25) [15:44:05 -194913.470377] Model parameter optimization (eps = 0.100000) [15:44:14] ML tree search #20, logLikelihood: -194913.445594 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.133160,0.756305) (0.042105,0.347638) (0.390466,0.738266) (0.434269,1.373308) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -194890.329603 AIC score: 393790.659207 / AICc score: 8437850.659207 / BIC score: 402559.165385 Free parameters (model + branch lengths): 2005 WARNING: Number of free parameters (K=2005) is larger than alignment size (n=586). This might lead to overfitting and compromise tree inference results! WARNING: Best ML tree contains 106 near-zero branches! Best ML tree with collapsed near-zero branches saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8.raxml.bestTreeCollapsed Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q96JH8/3_mltree/Q96JH8.raxml.log Analysis started: 02-Jul-2021 18:40:23 / finished: 03-Jul-2021 10:24:38 Elapsed time: 56654.873 seconds Consumed energy: 5240.576 Wh (= 26 km in an electric car, or 131 km with an e-scooter!)