RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 02-Jul-2021 20:12:20 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/2_msa/Q93008_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/3_mltree/Q93008 --seed 2 --threads 8 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (8 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/2_msa/Q93008_trimmed_msa.fasta [00:00:00] Loaded alignment with 525 taxa and 2672 sites WARNING: Sequences tr_M3YMH1_M3YMH1_MUSPF_9669 and tr_G1LK65_G1LK65_AILME_9646 are exactly identical! WARNING: Sequences tr_A0A2I2YGV5_A0A2I2YGV5_GORGO_9595 and tr_J9NUN1_J9NUN1_CANLF_9615 are exactly identical! WARNING: Sequences tr_A0A2I3RWD8_A0A2I3RWD8_PANTR_9598 and tr_A0A2R9BZB8_A0A2R9BZB8_PANPA_9597 are exactly identical! WARNING: Sequences tr_C6HEA7_C6HEA7_AJECH_544712 and tr_F0UPR4_F0UPR4_AJEC8_544711 are exactly identical! WARNING: Sequences tr_A0A158NJ55_A0A158NJ55_ATTCE_12957 and tr_A0A195BJS5_A0A195BJS5_9HYME_520822 are exactly identical! WARNING: Sequences tr_F6RFQ2_F6RFQ2_MACMU_9544 and tr_A0A0D9RNB8_A0A0D9RNB8_CHLSB_60711 are exactly identical! WARNING: Sequences tr_F6RFQ2_F6RFQ2_MACMU_9544 and tr_A0A2K5P6V1_A0A2K5P6V1_CERAT_9531 are exactly identical! WARNING: Sequences tr_H0Z892_H0Z892_TAEGU_59729 and tr_A0A218UBT5_A0A218UBT5_9PASE_299123 are exactly identical! WARNING: Sequences tr_A0A093H5F5_A0A093H5F5_STRCA_441894 and tr_A0A099ZRG8_A0A099ZRG8_TINGU_94827 are exactly identical! WARNING: Sequences tr_A0A2D0R2Q4_A0A2D0R2Q4_ICTPU_7998 and tr_W5UA47_W5UA47_ICTPU_7998 are exactly identical! WARNING: Duplicate sequences found: 10 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/3_mltree/Q93008.raxml.reduced.phy Alignment comprises 1 partitions and 2672 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 2672 / 2672 Gaps: 46.78 % Invariant sites: 0.07 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/3_mltree/Q93008.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 8 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 525 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 334 / 26720 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -1390016.539823] Initial branch length optimization [00:00:06 -1003135.009498] Model parameter optimization (eps = 10.000000) [00:01:29 -997371.013830] AUTODETECT spr round 1 (radius: 5) [00:02:59 -868704.072335] AUTODETECT spr round 2 (radius: 10) [00:04:46 -742577.902630] AUTODETECT spr round 3 (radius: 15) [00:06:48 -643041.777368] AUTODETECT spr round 4 (radius: 20) [00:09:12 -601162.094306] AUTODETECT spr round 5 (radius: 25) [00:12:07 -579094.385956] SPR radius for FAST iterations: 25 (autodetect) [00:12:07 -579094.385956] Model parameter optimization (eps = 3.000000) [00:12:59 -575776.131599] FAST spr round 1 (radius: 25) [00:16:06 -523900.970878] FAST spr round 2 (radius: 25) [00:18:18 -522495.489279] FAST spr round 3 (radius: 25) [00:20:01 -522390.073640] FAST spr round 4 (radius: 25) [00:21:18 -522378.297968] FAST spr round 5 (radius: 25) [00:22:28 -522376.808866] FAST spr round 6 (radius: 25) [00:23:37 -522361.865064] FAST spr round 7 (radius: 25) [00:24:42 -522361.822463] Model parameter optimization (eps = 1.000000) [00:25:02 -522344.476608] SLOW spr round 1 (radius: 5) [00:26:57 -522270.866962] SLOW spr round 2 (radius: 5) [00:28:48 -522270.460755] SLOW spr round 3 (radius: 5) [00:30:36 -522270.459422] SLOW spr round 4 (radius: 10) [00:32:41 -522270.458402] SLOW spr round 5 (radius: 15) [00:37:13 -522270.457537] SLOW spr round 6 (radius: 20) [00:43:02 -522270.456794] SLOW spr round 7 (radius: 25) [00:49:22 -522270.456251] Model parameter optimization (eps = 0.100000) [00:49:31] ML tree search #1, logLikelihood: -522270.423471 [00:49:32 -1405337.249495] Initial branch length optimization [00:49:38 -1009710.767549] Model parameter optimization (eps = 10.000000) [00:50:49 -1003574.234667] AUTODETECT spr round 1 (radius: 5) [00:52:18 -865236.198568] AUTODETECT spr round 2 (radius: 10) [00:54:09 -715068.480709] AUTODETECT spr round 3 (radius: 15) [00:56:22 -640552.785925] AUTODETECT spr round 4 (radius: 20) [00:59:11 -587739.162171] AUTODETECT spr round 5 (radius: 25) [01:02:07 -582014.288875] SPR radius for FAST iterations: 25 (autodetect) [01:02:07 -582014.288875] Model parameter optimization (eps = 3.000000) [01:03:02 -578350.786330] FAST spr round 1 (radius: 25) [01:06:17 -524342.071717] FAST spr round 2 (radius: 25) [01:08:28 -522558.729852] FAST spr round 3 (radius: 25) [01:10:10 -522422.181583] FAST spr round 4 (radius: 25) [01:11:35 -522411.291557] FAST spr round 5 (radius: 25) [01:12:43 -522411.070741] FAST spr round 6 (radius: 25) [01:13:50 -522411.046282] Model parameter optimization (eps = 1.000000) [01:14:07 -522378.744048] SLOW spr round 1 (radius: 5) [01:16:03 -522274.415636] SLOW spr round 2 (radius: 5) [01:17:53 -522273.951612] SLOW spr round 3 (radius: 5) [01:19:41 -522273.950591] SLOW spr round 4 (radius: 10) [01:21:49 -522273.138060] SLOW spr round 5 (radius: 5) [01:24:17 -522272.736772] SLOW spr round 6 (radius: 5) [01:27:00 -522272.734229] SLOW spr round 7 (radius: 10) [01:29:21 -522272.732986] SLOW spr round 8 (radius: 15) [01:33:41 -522272.732209] SLOW spr round 9 (radius: 20) [01:39:29 -522272.731664] SLOW spr round 10 (radius: 25) [01:46:01 -522272.731250] Model parameter optimization (eps = 0.100000) [01:46:14] ML tree search #2, logLikelihood: -522272.150237 [01:46:15 -1387201.497798] Initial branch length optimization [01:46:21 -1004275.635493] Model parameter optimization (eps = 10.000000) [01:47:30 -998287.526277] AUTODETECT spr round 1 (radius: 5) [01:48:56 -855068.262853] AUTODETECT spr round 2 (radius: 10) [01:50:44 -695021.567910] AUTODETECT spr round 3 (radius: 15) [01:52:54 -602033.687175] AUTODETECT spr round 4 (radius: 20) [01:55:24 -584954.597990] AUTODETECT spr round 5 (radius: 25) [01:58:07 -571057.101479] SPR radius for FAST iterations: 25 (autodetect) [01:58:07 -571057.101479] Model parameter optimization (eps = 3.000000) [01:59:08 -567456.441210] FAST spr round 1 (radius: 25) [02:01:49 -523432.664204] FAST spr round 2 (radius: 25) [02:03:43 -522419.467478] FAST spr round 3 (radius: 25) [02:05:19 -522307.535063] FAST spr round 4 (radius: 25) [02:06:33 -522307.533519] Model parameter optimization (eps = 1.000000) [02:06:50 -522299.568653] SLOW spr round 1 (radius: 5) [02:08:45 -522252.174513] SLOW spr round 2 (radius: 5) [02:10:35 -522251.098811] SLOW spr round 3 (radius: 5) [02:12:24 -522251.095599] SLOW spr round 4 (radius: 10) [02:14:33 -522251.094258] SLOW spr round 5 (radius: 15) [02:19:05 -522251.093648] SLOW spr round 6 (radius: 20) [02:24:51 -522251.093333] SLOW spr round 7 (radius: 25) [02:31:21 -522251.093142] Model parameter optimization (eps = 0.100000) [02:31:28] ML tree search #3, logLikelihood: -522251.077778 [02:31:28 -1390945.255787] Initial branch length optimization [02:31:35 -1002348.039537] Model parameter optimization (eps = 10.000000) [02:32:44 -996247.854222] AUTODETECT spr round 1 (radius: 5) [02:34:12 -866747.360152] AUTODETECT spr round 2 (radius: 10) [02:35:57 -754971.818828] AUTODETECT spr round 3 (radius: 15) [02:38:47 -633244.344017] AUTODETECT spr round 4 (radius: 20) [02:41:54 -587364.214004] AUTODETECT spr round 5 (radius: 25) [02:44:29 -577540.673552] SPR radius for FAST iterations: 25 (autodetect) [02:44:29 -577540.673552] Model parameter optimization (eps = 3.000000) [02:45:23 -574187.098410] FAST spr round 1 (radius: 25) [02:48:34 -524275.524460] FAST spr round 2 (radius: 25) [02:50:42 -522465.961161] FAST spr round 3 (radius: 25) [02:52:26 -522397.342613] FAST spr round 4 (radius: 25) [02:53:47 -522380.323931] FAST spr round 5 (radius: 25) [02:54:58 -522372.035131] FAST spr round 6 (radius: 25) [02:56:03 -522372.032670] Model parameter optimization (eps = 1.000000) [02:56:21 -522353.374278] SLOW spr round 1 (radius: 5) [02:58:14 -522263.789594] SLOW spr round 2 (radius: 5) [03:00:09 -522255.005641] SLOW spr round 3 (radius: 5) [03:02:01 -522252.105009] SLOW spr round 4 (radius: 5) [03:03:50 -522252.104715] SLOW spr round 5 (radius: 10) [03:06:00 -522252.104510] SLOW spr round 6 (radius: 15) [03:10:33 -522252.104350] SLOW spr round 7 (radius: 20) [03:16:17 -522252.104225] SLOW spr round 8 (radius: 25) [03:22:47 -522252.104126] Model parameter optimization (eps = 0.100000) [03:23:01] ML tree search #4, logLikelihood: -522251.286786 [03:23:01 -1386480.634092] Initial branch length optimization [03:23:07 -999775.422449] Model parameter optimization (eps = 10.000000) [03:24:17 -993956.718710] AUTODETECT spr round 1 (radius: 5) [03:25:45 -855716.238113] AUTODETECT spr round 2 (radius: 10) [03:27:33 -723897.516212] AUTODETECT spr round 3 (radius: 15) [03:29:38 -625835.585380] AUTODETECT spr round 4 (radius: 20) [03:32:05 -581457.968796] AUTODETECT spr round 5 (radius: 25) [03:34:55 -578521.976765] SPR radius for FAST iterations: 25 (autodetect) [03:34:55 -578521.976765] Model parameter optimization (eps = 3.000000) [03:35:53 -575305.148000] FAST spr round 1 (radius: 25) [03:38:40 -523518.261629] FAST spr round 2 (radius: 25) [03:40:34 -522419.401431] FAST spr round 3 (radius: 25) [03:42:05 -522384.734163] FAST spr round 4 (radius: 25) [03:43:22 -522382.087128] FAST spr round 5 (radius: 25) [03:44:30 -522382.071951] Model parameter optimization (eps = 1.000000) [03:44:47 -522362.205783] SLOW spr round 1 (radius: 5) [03:46:41 -522266.761019] SLOW spr round 2 (radius: 5) [03:48:33 -522263.277384] SLOW spr round 3 (radius: 5) [03:50:22 -522263.277230] SLOW spr round 4 (radius: 10) [03:52:35 -522263.277105] SLOW spr round 5 (radius: 15) [03:57:00 -522263.277000] SLOW spr round 6 (radius: 20) [04:02:41 -522263.276911] SLOW spr round 7 (radius: 25) [04:09:04 -522263.276834] Model parameter optimization (eps = 0.100000) [04:09:10] ML tree search #5, logLikelihood: -522263.227711 [04:09:10 -1391655.563207] Initial branch length optimization [04:09:15 -1002821.121570] Model parameter optimization (eps = 10.000000) [04:10:23 -996878.570217] AUTODETECT spr round 1 (radius: 5) [04:11:49 -859989.280936] AUTODETECT spr round 2 (radius: 10) [04:13:36 -713968.216132] AUTODETECT spr round 3 (radius: 15) [04:15:55 -596113.959718] AUTODETECT spr round 4 (radius: 20) [04:18:29 -562126.303506] AUTODETECT spr round 5 (radius: 25) [04:21:32 -560794.302425] SPR radius for FAST iterations: 25 (autodetect) [04:21:32 -560794.302425] Model parameter optimization (eps = 3.000000) [04:22:22 -557572.139139] FAST spr round 1 (radius: 25) [04:25:33 -523334.614080] FAST spr round 2 (radius: 25) [04:27:25 -522407.421377] FAST spr round 3 (radius: 25) [04:29:07 -522358.156113] FAST spr round 4 (radius: 25) [04:30:26 -522354.656345] FAST spr round 5 (radius: 25) [04:31:38 -522350.600930] FAST spr round 6 (radius: 25) [04:32:44 -522350.596594] Model parameter optimization (eps = 1.000000) [04:33:04 -522342.480884] SLOW spr round 1 (radius: 5) [04:35:08 -522276.349591] SLOW spr round 2 (radius: 5) [04:37:07 -522260.685111] SLOW spr round 3 (radius: 5) [04:38:56 -522259.816141] SLOW spr round 4 (radius: 5) [04:40:46 -522259.814947] SLOW spr round 5 (radius: 10) [04:42:53 -522259.813949] SLOW spr round 6 (radius: 15) [04:47:12 -522259.813037] SLOW spr round 7 (radius: 20) [04:52:37 -522259.812188] SLOW spr round 8 (radius: 25) [04:58:37 -522259.811395] Model parameter optimization (eps = 0.100000) [04:58:48] ML tree search #6, logLikelihood: -522259.594513 [04:58:48 -1393120.814929] Initial branch length optimization [04:58:54 -995626.731274] Model parameter optimization (eps = 10.000000) [05:00:13 -990001.703214] AUTODETECT spr round 1 (radius: 5) [05:01:37 -858039.424476] AUTODETECT spr round 2 (radius: 10) [05:03:25 -698095.466040] AUTODETECT spr round 3 (radius: 15) [05:05:46 -575718.613726] AUTODETECT spr round 4 (radius: 20) [05:08:58 -563586.195201] AUTODETECT spr round 5 (radius: 25) [05:11:34 -562877.308869] SPR radius for FAST iterations: 25 (autodetect) [05:11:34 -562877.308869] Model parameter optimization (eps = 3.000000) [05:12:38 -560004.196054] FAST spr round 1 (radius: 25) [05:15:27 -524091.416403] FAST spr round 2 (radius: 25) [05:17:22 -522522.490552] FAST spr round 3 (radius: 25) [05:18:56 -522410.428026] FAST spr round 4 (radius: 25) [05:20:11 -522406.674810] FAST spr round 5 (radius: 25) [05:21:18 -522406.662237] Model parameter optimization (eps = 1.000000) [05:21:32 -522395.270487] SLOW spr round 1 (radius: 5) [05:23:22 -522279.726714] SLOW spr round 2 (radius: 5) [05:25:15 -522268.832218] SLOW spr round 3 (radius: 5) [05:27:04 -522267.638265] SLOW spr round 4 (radius: 5) [05:28:52 -522267.637667] SLOW spr round 5 (radius: 10) [05:30:56 -522267.637141] SLOW spr round 6 (radius: 15) [05:35:27 -522267.636654] SLOW spr round 7 (radius: 20) [05:41:29 -522267.636203] SLOW spr round 8 (radius: 25) [05:48:08 -522267.635786] Model parameter optimization (eps = 0.100000) [05:48:14] ML tree search #7, logLikelihood: -522267.554540 [05:48:14 -1395275.798677] Initial branch length optimization [05:48:21 -1001623.400005] Model parameter optimization (eps = 10.000000) [05:49:31 -995604.505432] AUTODETECT spr round 1 (radius: 5) [05:50:58 -868899.957230] AUTODETECT spr round 2 (radius: 10) [05:52:45 -716341.597579] AUTODETECT spr round 3 (radius: 15) [05:54:55 -618630.526898] AUTODETECT spr round 4 (radius: 20) [05:57:07 -578596.634097] AUTODETECT spr round 5 (radius: 25) [05:59:42 -576929.119606] SPR radius for FAST iterations: 25 (autodetect) [05:59:42 -576929.119606] Model parameter optimization (eps = 3.000000) [06:00:45 -572569.527937] FAST spr round 1 (radius: 25) [06:03:33 -523857.987160] FAST spr round 2 (radius: 25) [06:05:32 -522516.509025] FAST spr round 3 (radius: 25) [06:07:12 -522383.981971] FAST spr round 4 (radius: 25) [06:08:26 -522383.605709] FAST spr round 5 (radius: 25) [06:09:34 -522383.433835] FAST spr round 6 (radius: 25) [06:10:41 -522383.364993] Model parameter optimization (eps = 1.000000) [06:11:01 -522364.712239] SLOW spr round 1 (radius: 5) [06:12:55 -522278.233785] SLOW spr round 2 (radius: 5) [06:14:48 -522276.993378] SLOW spr round 3 (radius: 5) [06:16:38 -522276.930944] SLOW spr round 4 (radius: 10) [06:18:46 -522268.098458] SLOW spr round 5 (radius: 5) [06:21:15 -522267.888031] SLOW spr round 6 (radius: 5) [06:23:21 -522267.885688] SLOW spr round 7 (radius: 10) [06:25:43 -522261.108665] SLOW spr round 8 (radius: 5) [06:28:14 -522249.614150] SLOW spr round 9 (radius: 5) [06:30:18 -522249.457949] SLOW spr round 10 (radius: 5) [06:32:13 -522249.419106] SLOW spr round 11 (radius: 10) [06:34:24 -522249.417089] SLOW spr round 12 (radius: 15) [06:38:53 -522249.415847] SLOW spr round 13 (radius: 20) [06:44:41 -522249.415075] SLOW spr round 14 (radius: 25) [06:51:08 -522249.414587] Model parameter optimization (eps = 0.100000) [06:51:22] ML tree search #8, logLikelihood: -522248.737852 [06:51:22 -1387170.369590] Initial branch length optimization [06:51:28 -1000839.005717] Model parameter optimization (eps = 10.000000) [06:52:42 -994776.737840] AUTODETECT spr round 1 (radius: 5) [06:54:08 -856694.166913] AUTODETECT spr round 2 (radius: 10) [06:55:57 -719415.775030] AUTODETECT spr round 3 (radius: 15) [06:57:55 -617146.781414] AUTODETECT spr round 4 (radius: 20) [07:00:28 -591122.061565] AUTODETECT spr round 5 (radius: 25) [07:03:46 -576337.325132] SPR radius for FAST iterations: 25 (autodetect) [07:03:46 -576337.325132] Model parameter optimization (eps = 3.000000) [07:04:41 -573065.379694] FAST spr round 1 (radius: 25) [07:07:48 -524212.303283] FAST spr round 2 (radius: 25) [07:10:04 -522481.691550] FAST spr round 3 (radius: 25) [07:11:45 -522386.415585] FAST spr round 4 (radius: 25) [07:12:59 -522379.350672] FAST spr round 5 (radius: 25) [07:14:07 -522379.314168] Model parameter optimization (eps = 1.000000) [07:14:28 -522360.075114] SLOW spr round 1 (radius: 5) [07:18:01 -522279.259424] SLOW spr round 2 (radius: 5) [07:19:57 -522276.988177] SLOW spr round 3 (radius: 5) [07:21:44 -522276.934531] SLOW spr round 4 (radius: 10) [07:23:53 -522270.666682] SLOW spr round 5 (radius: 5) [07:26:22 -522258.971367] SLOW spr round 6 (radius: 5) [07:28:27 -522258.970623] SLOW spr round 7 (radius: 10) [07:30:49 -522258.970132] SLOW spr round 8 (radius: 15) [07:35:12 -522258.969763] SLOW spr round 9 (radius: 20) [07:41:16 -522258.969467] SLOW spr round 10 (radius: 25) [07:47:53 -522258.969219] Model parameter optimization (eps = 0.100000) [07:48:03] ML tree search #9, logLikelihood: -522258.178470 [07:48:03 -1392336.951310] Initial branch length optimization [07:48:09 -991320.788418] Model parameter optimization (eps = 10.000000) [07:49:12 -985583.904644] AUTODETECT spr round 1 (radius: 5) [07:50:38 -840653.876558] AUTODETECT spr round 2 (radius: 10) [07:52:27 -720328.567949] AUTODETECT spr round 3 (radius: 15) [07:54:38 -616500.736558] AUTODETECT spr round 4 (radius: 20) [07:56:53 -573558.351575] AUTODETECT spr round 5 (radius: 25) [07:59:14 -564897.449622] SPR radius for FAST iterations: 25 (autodetect) [07:59:14 -564897.449622] Model parameter optimization (eps = 3.000000) [08:00:08 -562107.739666] FAST spr round 1 (radius: 25) [08:03:13 -524265.537752] FAST spr round 2 (radius: 25) [08:05:23 -522669.898957] FAST spr round 3 (radius: 25) [08:07:00 -522396.073048] FAST spr round 4 (radius: 25) [08:08:14 -522395.996543] Model parameter optimization (eps = 1.000000) [08:08:36 -522379.129419] SLOW spr round 1 (radius: 5) [08:10:40 -522272.813537] SLOW spr round 2 (radius: 5) [08:12:36 -522267.704649] SLOW spr round 3 (radius: 5) [08:14:27 -522267.703599] SLOW spr round 4 (radius: 10) [08:16:37 -522267.703009] SLOW spr round 5 (radius: 15) [08:21:04 -522267.702596] SLOW spr round 6 (radius: 20) [08:26:50 -522267.702278] SLOW spr round 7 (radius: 25) [08:33:16 -522267.702021] Model parameter optimization (eps = 0.100000) [08:33:29] ML tree search #10, logLikelihood: -522267.302732 [08:33:29 -1370287.767368] Initial branch length optimization [08:33:36 -997541.525511] Model parameter optimization (eps = 10.000000) [08:34:46 -991688.280209] AUTODETECT spr round 1 (radius: 5) [08:36:14 -870604.406862] AUTODETECT spr round 2 (radius: 10) [08:38:01 -720453.954095] AUTODETECT spr round 3 (radius: 15) [08:40:14 -605708.546087] AUTODETECT spr round 4 (radius: 20) [08:42:42 -587368.337846] AUTODETECT spr round 5 (radius: 25) [08:45:36 -577185.280703] SPR radius for FAST iterations: 25 (autodetect) [08:45:36 -577185.280703] Model parameter optimization (eps = 3.000000) [08:46:45 -573160.704560] FAST spr round 1 (radius: 25) [08:49:34 -524533.469861] FAST spr round 2 (radius: 25) [08:51:24 -522460.758246] FAST spr round 3 (radius: 25) [08:52:56 -522360.742569] FAST spr round 4 (radius: 25) [08:54:10 -522359.931307] FAST spr round 5 (radius: 25) [08:55:20 -522359.929289] Model parameter optimization (eps = 1.000000) [08:55:38 -522341.163384] SLOW spr round 1 (radius: 5) [08:57:27 -522258.768082] SLOW spr round 2 (radius: 5) [08:59:21 -522253.602523] SLOW spr round 3 (radius: 5) [09:01:14 -522253.600880] SLOW spr round 4 (radius: 10) [09:03:23 -522248.361873] SLOW spr round 5 (radius: 5) [09:05:50 -522248.334924] SLOW spr round 6 (radius: 10) [09:08:32 -522248.334570] SLOW spr round 7 (radius: 15) [09:12:45 -522248.334271] SLOW spr round 8 (radius: 20) [09:18:35 -522248.334012] SLOW spr round 9 (radius: 25) [09:25:05 -522248.333782] Model parameter optimization (eps = 0.100000) [09:25:19] ML tree search #11, logLikelihood: -522248.004431 [09:25:19 -1384452.126927] Initial branch length optimization [09:25:25 -1005333.576593] Model parameter optimization (eps = 10.000000) [09:26:45 -999605.331975] AUTODETECT spr round 1 (radius: 5) [09:28:12 -866906.142055] AUTODETECT spr round 2 (radius: 10) [09:29:58 -729677.459019] AUTODETECT spr round 3 (radius: 15) [09:31:57 -639072.869878] AUTODETECT spr round 4 (radius: 20) [09:34:06 -588939.664519] AUTODETECT spr round 5 (radius: 25) [09:36:36 -580239.398114] SPR radius for FAST iterations: 25 (autodetect) [09:36:36 -580239.398114] Model parameter optimization (eps = 3.000000) [09:37:29 -576756.256622] FAST spr round 1 (radius: 25) [09:40:12 -524046.495046] FAST spr round 2 (radius: 25) [09:42:07 -522425.194890] FAST spr round 3 (radius: 25) [09:43:42 -522354.128858] FAST spr round 4 (radius: 25) [09:44:59 -522342.233318] FAST spr round 5 (radius: 25) [09:46:18 -522342.231325] Model parameter optimization (eps = 1.000000) [09:46:55 -522325.047444] SLOW spr round 1 (radius: 5) [09:48:46 -522252.989001] SLOW spr round 2 (radius: 5) [09:50:36 -522252.978550] SLOW spr round 3 (radius: 10) [09:52:43 -522252.977363] SLOW spr round 4 (radius: 15) [09:57:09 -522252.976545] SLOW spr round 5 (radius: 20) [10:02:51 -522252.975959] SLOW spr round 6 (radius: 25) [10:09:25 -522252.975525] Model parameter optimization (eps = 0.100000) [10:09:30] ML tree search #12, logLikelihood: -522252.961848 [10:09:30 -1398987.326221] Initial branch length optimization [10:09:36 -999995.930296] Model parameter optimization (eps = 10.000000) [10:10:47 -994044.692780] AUTODETECT spr round 1 (radius: 5) [10:12:15 -870687.340657] AUTODETECT spr round 2 (radius: 10) [10:14:04 -734590.566765] AUTODETECT spr round 3 (radius: 15) [10:16:15 -629328.286761] AUTODETECT spr round 4 (radius: 20) [10:18:43 -590480.420741] AUTODETECT spr round 5 (radius: 25) [10:21:50 -583336.465565] SPR radius for FAST iterations: 25 (autodetect) [10:21:50 -583336.465565] Model parameter optimization (eps = 3.000000) [10:22:45 -580078.824934] FAST spr round 1 (radius: 25) [10:25:52 -525145.637251] FAST spr round 2 (radius: 25) [10:28:07 -522450.690538] FAST spr round 3 (radius: 25) [10:29:46 -522396.644909] FAST spr round 4 (radius: 25) [10:31:06 -522386.583388] FAST spr round 5 (radius: 25) [10:32:18 -522382.263752] FAST spr round 6 (radius: 25) [10:33:24 -522382.215817] Model parameter optimization (eps = 1.000000) [10:33:45 -522365.513783] SLOW spr round 1 (radius: 5) [10:35:44 -522280.305598] SLOW spr round 2 (radius: 5) [10:37:40 -522266.896115] SLOW spr round 3 (radius: 5) [10:39:30 -522266.894268] SLOW spr round 4 (radius: 10) [10:41:40 -522266.893513] SLOW spr round 5 (radius: 15) [10:46:10 -522266.893110] SLOW spr round 6 (radius: 20) [10:52:04 -522266.892834] SLOW spr round 7 (radius: 25) [10:58:28 -522266.892611] Model parameter optimization (eps = 0.100000) [10:58:40] ML tree search #13, logLikelihood: -522266.449737 [10:58:40 -1389589.439628] Initial branch length optimization [10:58:45 -1000337.774594] Model parameter optimization (eps = 10.000000) [10:59:54 -994278.122966] AUTODETECT spr round 1 (radius: 5) [11:01:24 -853642.927658] AUTODETECT spr round 2 (radius: 10) [11:03:11 -699668.798446] AUTODETECT spr round 3 (radius: 15) [11:05:11 -608716.443418] AUTODETECT spr round 4 (radius: 20) [11:07:54 -575177.399723] AUTODETECT spr round 5 (radius: 25) [11:11:00 -573003.656683] SPR radius for FAST iterations: 25 (autodetect) [11:11:00 -573003.656683] Model parameter optimization (eps = 3.000000) [11:12:13 -569778.562823] FAST spr round 1 (radius: 25) [11:15:17 -523302.087495] FAST spr round 2 (radius: 25) [11:17:22 -522400.326421] FAST spr round 3 (radius: 25) [11:19:02 -522340.717763] FAST spr round 4 (radius: 25) [11:20:19 -522337.071132] FAST spr round 5 (radius: 25) [11:21:27 -522337.069523] Model parameter optimization (eps = 1.000000) [11:21:42 -522327.219897] SLOW spr round 1 (radius: 5) [11:23:36 -522250.265158] SLOW spr round 2 (radius: 5) [11:25:25 -522249.297367] SLOW spr round 3 (radius: 5) [11:27:13 -522249.295145] SLOW spr round 4 (radius: 10) [11:29:18 -522249.293938] SLOW spr round 5 (radius: 15) [11:33:52 -522249.293185] SLOW spr round 6 (radius: 20) [11:39:41 -522249.292695] SLOW spr round 7 (radius: 25) [11:46:17 -522249.292391] Model parameter optimization (eps = 0.100000) [11:46:23] ML tree search #14, logLikelihood: -522249.195973 [11:46:23 -1381880.541731] Initial branch length optimization [11:46:28 -999265.474202] Model parameter optimization (eps = 10.000000) [11:47:35 -993704.334524] AUTODETECT spr round 1 (radius: 5) [11:49:04 -859729.721651] AUTODETECT spr round 2 (radius: 10) [11:50:54 -695402.501459] AUTODETECT spr round 3 (radius: 15) [11:53:01 -596586.332078] AUTODETECT spr round 4 (radius: 20) [11:55:17 -573626.759470] AUTODETECT spr round 5 (radius: 25) [11:58:32 -572675.890670] SPR radius for FAST iterations: 25 (autodetect) [11:58:32 -572675.890670] Model parameter optimization (eps = 3.000000) [11:59:26 -569831.388119] FAST spr round 1 (radius: 25) [12:02:47 -524035.668080] FAST spr round 2 (radius: 25) [12:04:52 -522523.238449] FAST spr round 3 (radius: 25) [12:06:34 -522384.031602] FAST spr round 4 (radius: 25) [12:07:52 -522372.798974] FAST spr round 5 (radius: 25) [12:09:03 -522371.163057] FAST spr round 6 (radius: 25) [12:10:11 -522371.139660] Model parameter optimization (eps = 1.000000) [12:10:31 -522354.407828] SLOW spr round 1 (radius: 5) [12:12:30 -522291.336528] SLOW spr round 2 (radius: 5) [12:14:22 -522289.014114] SLOW spr round 3 (radius: 5) [12:16:11 -522289.013180] SLOW spr round 4 (radius: 10) [12:18:28 -522275.337763] SLOW spr round 5 (radius: 5) [12:21:02 -522257.719111] SLOW spr round 6 (radius: 5) [12:23:10 -522254.621407] SLOW spr round 7 (radius: 5) [12:25:05 -522254.619867] SLOW spr round 8 (radius: 10) [12:27:19 -522254.618664] SLOW spr round 9 (radius: 15) [12:31:42 -522254.617668] SLOW spr round 10 (radius: 20) [12:37:27 -522254.616811] SLOW spr round 11 (radius: 25) [12:43:51 -522254.616051] Model parameter optimization (eps = 0.100000) [12:44:02] ML tree search #15, logLikelihood: -522254.294028 [12:44:02 -1376803.876274] Initial branch length optimization [12:44:08 -988755.759080] Model parameter optimization (eps = 10.000000) [12:45:21 -983227.937076] AUTODETECT spr round 1 (radius: 5) [12:46:49 -843095.560998] AUTODETECT spr round 2 (radius: 10) [12:48:38 -698502.133962] AUTODETECT spr round 3 (radius: 15) [12:50:41 -599622.727567] AUTODETECT spr round 4 (radius: 20) [12:53:07 -556222.072252] AUTODETECT spr round 5 (radius: 25) [12:55:39 -554422.546424] SPR radius for FAST iterations: 25 (autodetect) [12:55:39 -554422.546424] Model parameter optimization (eps = 3.000000) [12:56:33 -551356.089200] FAST spr round 1 (radius: 25) [12:59:37 -523666.310860] FAST spr round 2 (radius: 25) [13:01:45 -522458.997157] FAST spr round 3 (radius: 25) [13:03:31 -522372.963814] FAST spr round 4 (radius: 25) [13:04:46 -522367.360166] FAST spr round 5 (radius: 25) [13:05:57 -522352.112169] FAST spr round 6 (radius: 25) [13:07:05 -522351.081589] FAST spr round 7 (radius: 25) [13:08:11 -522350.972562] FAST spr round 8 (radius: 25) [13:09:17 -522350.934010] Model parameter optimization (eps = 1.000000) [13:09:32 -522338.299521] SLOW spr round 1 (radius: 5) [13:11:34 -522267.371822] SLOW spr round 2 (radius: 5) [13:13:25 -522263.899361] SLOW spr round 3 (radius: 5) [13:15:13 -522263.898007] SLOW spr round 4 (radius: 10) [13:17:21 -522263.896481] SLOW spr round 5 (radius: 15) [13:21:41 -522263.895741] SLOW spr round 6 (radius: 20) [13:27:05 -522263.895114] SLOW spr round 7 (radius: 25) [13:33:08 -522263.894560] Model parameter optimization (eps = 0.100000) [13:33:20] ML tree search #16, logLikelihood: -522263.575849 [13:33:20 -1374967.795678] Initial branch length optimization [13:33:26 -997310.814775] Model parameter optimization (eps = 10.000000) [13:34:43 -991158.577242] AUTODETECT spr round 1 (radius: 5) [13:36:11 -863252.103308] AUTODETECT spr round 2 (radius: 10) [13:37:59 -704092.810683] AUTODETECT spr round 3 (radius: 15) [13:40:06 -587008.926802] AUTODETECT spr round 4 (radius: 20) [13:42:43 -568150.389276] AUTODETECT spr round 5 (radius: 25) [13:45:50 -566161.087212] SPR radius for FAST iterations: 25 (autodetect) [13:45:50 -566161.087212] Model parameter optimization (eps = 3.000000) [13:46:49 -562855.867424] FAST spr round 1 (radius: 25) [13:49:44 -523521.590180] FAST spr round 2 (radius: 25) [13:51:47 -522498.293197] FAST spr round 3 (radius: 25) [13:53:29 -522325.684950] FAST spr round 4 (radius: 25) [13:54:51 -522313.036426] FAST spr round 5 (radius: 25) [13:56:00 -522312.986493] Model parameter optimization (eps = 1.000000) [13:56:15 -522310.562717] SLOW spr round 1 (radius: 5) [13:58:06 -522254.264623] SLOW spr round 2 (radius: 5) [13:59:58 -522251.545135] SLOW spr round 3 (radius: 5) [14:01:47 -522251.533337] SLOW spr round 4 (radius: 10) [14:03:59 -522251.532604] SLOW spr round 5 (radius: 15) [14:08:29 -522251.531915] SLOW spr round 6 (radius: 20) [14:14:14 -522251.531266] SLOW spr round 7 (radius: 25) [14:20:43 -522251.530654] Model parameter optimization (eps = 0.100000) [14:20:58] ML tree search #17, logLikelihood: -522251.011121 [14:20:58 -1375785.066909] Initial branch length optimization [14:21:04 -991991.497352] Model parameter optimization (eps = 10.000000) [14:22:12 -986061.725566] AUTODETECT spr round 1 (radius: 5) [14:23:39 -860838.794855] AUTODETECT spr round 2 (radius: 10) [14:25:24 -727819.083692] AUTODETECT spr round 3 (radius: 15) [14:27:27 -621789.539957] AUTODETECT spr round 4 (radius: 20) [14:29:54 -572616.794251] AUTODETECT spr round 5 (radius: 25) [14:33:17 -568865.447851] SPR radius for FAST iterations: 25 (autodetect) [14:33:17 -568865.447851] Model parameter optimization (eps = 3.000000) [14:34:17 -565880.758703] FAST spr round 1 (radius: 25) [14:37:10 -523822.086751] FAST spr round 2 (radius: 25) [14:39:15 -522432.796624] FAST spr round 3 (radius: 25) [14:40:43 -522420.790234] FAST spr round 4 (radius: 25) [14:41:57 -522420.775379] Model parameter optimization (eps = 1.000000) [14:42:16 -522404.029731] SLOW spr round 1 (radius: 5) [14:44:11 -522284.713862] SLOW spr round 2 (radius: 5) [14:46:09 -522270.601511] SLOW spr round 3 (radius: 5) [14:47:59 -522270.588769] SLOW spr round 4 (radius: 10) [14:50:12 -522264.951786] SLOW spr round 5 (radius: 5) [14:52:42 -522263.337380] SLOW spr round 6 (radius: 5) [14:54:49 -522263.336977] SLOW spr round 7 (radius: 10) [14:57:11 -522263.336885] SLOW spr round 8 (radius: 15) [15:01:30 -522263.336824] SLOW spr round 9 (radius: 20) [15:07:09 -522263.336784] SLOW spr round 10 (radius: 25) [15:13:41 -522263.336757] Model parameter optimization (eps = 0.100000) [15:13:53] ML tree search #18, logLikelihood: -522262.977254 [15:13:53 -1388031.784838] Initial branch length optimization [15:13:59 -998138.815150] Model parameter optimization (eps = 10.000000) [15:15:17 -992215.297989] AUTODETECT spr round 1 (radius: 5) [15:16:44 -859934.685430] AUTODETECT spr round 2 (radius: 10) [15:18:35 -700901.627769] AUTODETECT spr round 3 (radius: 15) [15:20:42 -611638.874277] AUTODETECT spr round 4 (radius: 20) [15:23:37 -580806.163596] AUTODETECT spr round 5 (radius: 25) [15:26:56 -574639.912009] SPR radius for FAST iterations: 25 (autodetect) [15:26:56 -574639.912009] Model parameter optimization (eps = 3.000000) [15:28:05 -571292.700702] FAST spr round 1 (radius: 25) [15:31:12 -524163.655283] FAST spr round 2 (radius: 25) [15:33:18 -522531.880511] FAST spr round 3 (radius: 25) [15:34:53 -522370.965607] FAST spr round 4 (radius: 25) [15:36:12 -522355.797894] FAST spr round 5 (radius: 25) [15:37:19 -522355.773664] Model parameter optimization (eps = 1.000000) [15:37:36 -522347.881785] SLOW spr round 1 (radius: 5) [15:39:25 -522270.607724] SLOW spr round 2 (radius: 5) [15:41:22 -522251.625454] SLOW spr round 3 (radius: 5) [15:43:11 -522251.468335] SLOW spr round 4 (radius: 5) [15:45:00 -522251.464522] SLOW spr round 5 (radius: 10) [15:47:07 -522251.463175] SLOW spr round 6 (radius: 15) [15:51:41 -522251.462577] SLOW spr round 7 (radius: 20) [15:57:30 -522251.462286] SLOW spr round 8 (radius: 25) [16:04:00 -522251.462127] Model parameter optimization (eps = 0.100000) [16:04:12] ML tree search #19, logLikelihood: -522250.997263 [16:04:12 -1387662.298195] Initial branch length optimization [16:04:17 -1002109.865988] Model parameter optimization (eps = 10.000000) [16:05:24 -996789.039307] AUTODETECT spr round 1 (radius: 5) [16:06:51 -856520.398486] AUTODETECT spr round 2 (radius: 10) [16:08:39 -719341.649866] AUTODETECT spr round 3 (radius: 15) [16:10:40 -638462.350464] AUTODETECT spr round 4 (radius: 20) [16:13:03 -585401.740821] AUTODETECT spr round 5 (radius: 25) [16:15:55 -578387.726717] SPR radius for FAST iterations: 25 (autodetect) [16:15:55 -578387.726717] Model parameter optimization (eps = 3.000000) [16:16:55 -575557.710165] FAST spr round 1 (radius: 25) [16:19:53 -523556.347359] FAST spr round 2 (radius: 25) [16:21:48 -522481.485709] FAST spr round 3 (radius: 25) [16:23:19 -522384.328071] FAST spr round 4 (radius: 25) [16:24:37 -522380.835377] FAST spr round 5 (radius: 25) [16:25:46 -522380.823710] Model parameter optimization (eps = 1.000000) [16:26:03 -522366.277741] SLOW spr round 1 (radius: 5) [16:27:53 -522275.888551] SLOW spr round 2 (radius: 5) [16:29:45 -522273.610109] SLOW spr round 3 (radius: 5) [16:31:34 -522273.608944] SLOW spr round 4 (radius: 10) [16:33:38 -522264.533935] SLOW spr round 5 (radius: 5) [16:36:09 -522259.536912] SLOW spr round 6 (radius: 5) [16:38:16 -522259.536720] SLOW spr round 7 (radius: 10) [16:40:35 -522259.536610] SLOW spr round 8 (radius: 15) [16:44:53 -522259.536536] SLOW spr round 9 (radius: 20) [16:50:44 -522259.536485] SLOW spr round 10 (radius: 25) [16:57:12 -522259.536449] Model parameter optimization (eps = 0.100000) [16:57:21] ML tree search #20, logLikelihood: -522259.330889 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.115821,0.547082) (0.107236,0.543938) (0.409643,0.757062) (0.367300,1.546913) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -522248.004431 AIC score: 1046602.008863 / AICc score: 1047973.902558 / BIC score: 1052804.792272 Free parameters (model + branch lengths): 1053 Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/3_mltree/Q93008.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/3_mltree/Q93008.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/3_mltree/Q93008.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q93008/3_mltree/Q93008.raxml.log Analysis started: 02-Jul-2021 20:12:20 / finished: 03-Jul-2021 13:09:41 Elapsed time: 61041.191 seconds Consumed energy: 5784.870 Wh (= 29 km in an electric car, or 145 km with an e-scooter!)