RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 06-Jul-2021 04:06:54 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/2_msa/Q92954_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/3_mltree/Q92954 --seed 2 --threads 8 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (8 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/2_msa/Q92954_trimmed_msa.fasta [00:00:00] Loaded alignment with 402 taxa and 2659 sites WARNING: Sequences tr_M3YE15_M3YE15_MUSPF_9669 and tr_A0A2Y9L4L4_A0A2Y9L4L4_ENHLU_391180 are exactly identical! WARNING: Sequences tr_G1REA5_G1REA5_NOMLE_61853 and tr_H2R1J6_H2R1J6_PANTR_9598 are exactly identical! WARNING: Sequences tr_I3LYD0_I3LYD0_ICTTR_43179 and tr_A0A1S3EWL2_A0A1S3EWL2_DIPOR_10020 are exactly identical! WARNING: Sequences tr_I3LYD0_I3LYD0_ICTTR_43179 and tr_A0A1U7TRU6_A0A1U7TRU6_TARSY_1868482 are exactly identical! WARNING: Sequences tr_A0A1D5RJ13_A0A1D5RJ13_MACMU_9544 and tr_A0A2K5KUB8_A0A2K5KUB8_CERAT_9531 are exactly identical! WARNING: Sequences tr_G5B5C5_G5B5C5_HETGA_10181 and tr_A0A091CJT9_A0A091CJT9_FUKDA_885580 are exactly identical! WARNING: Sequences tr_A0A2U3VTA8_A0A2U3VTA8_ODORO_9708 and tr_A0A2U3Y5R9_A0A2U3Y5R9_LEPWE_9713 are exactly identical! WARNING: Duplicate sequences found: 7 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/3_mltree/Q92954.raxml.reduced.phy Alignment comprises 1 partitions and 2625 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 2659 / 2625 Gaps: 70.41 % Invariant sites: 3.23 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/3_mltree/Q92954.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 8 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 402 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 329 / 26320 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -628096.834902] Initial branch length optimization [00:00:03 -487212.658925] Model parameter optimization (eps = 10.000000) [00:00:56 -484989.068210] AUTODETECT spr round 1 (radius: 5) [00:01:43 -400489.084137] AUTODETECT spr round 2 (radius: 10) [00:02:48 -340649.136286] AUTODETECT spr round 3 (radius: 15) [00:04:01 -318780.516082] AUTODETECT spr round 4 (radius: 20) [00:05:20 -315625.178922] AUTODETECT spr round 5 (radius: 25) [00:06:51 -315181.056023] SPR radius for FAST iterations: 25 (autodetect) [00:06:51 -315181.056023] Model parameter optimization (eps = 3.000000) [00:07:23 -309836.899824] FAST spr round 1 (radius: 25) [00:09:14 -299707.844583] FAST spr round 2 (radius: 25) [00:10:33 -299277.540718] FAST spr round 3 (radius: 25) [00:11:36 -299231.069395] FAST spr round 4 (radius: 25) [00:12:24 -299224.079345] FAST spr round 5 (radius: 25) [00:13:05 -299224.079268] Model parameter optimization (eps = 1.000000) [00:13:16 -299217.362338] SLOW spr round 1 (radius: 5) [00:14:42 -299174.694233] SLOW spr round 2 (radius: 5) [00:15:58 -299173.994156] SLOW spr round 3 (radius: 5) [00:17:10 -299173.993850] SLOW spr round 4 (radius: 10) [00:18:30 -299170.691296] SLOW spr round 5 (radius: 5) [00:20:13 -299167.705545] SLOW spr round 6 (radius: 5) [00:21:39 -299167.704221] SLOW spr round 7 (radius: 10) [00:23:06 -299166.892794] SLOW spr round 8 (radius: 5) [00:24:45 -299166.890972] SLOW spr round 9 (radius: 10) [00:26:27 -299166.890893] SLOW spr round 10 (radius: 15) [00:29:34 -299163.536441] SLOW spr round 11 (radius: 5) [00:31:20 -299163.535922] SLOW spr round 12 (radius: 10) [00:33:12 -299163.535907] SLOW spr round 13 (radius: 15) [00:36:14 -299163.535906] SLOW spr round 14 (radius: 20) [00:41:31 -299163.535906] SLOW spr round 15 (radius: 25) [00:46:30 -299163.535906] Model parameter optimization (eps = 0.100000) [00:46:36] ML tree search #1, logLikelihood: -299163.359533 [00:46:36 -626044.733075] Initial branch length optimization [00:46:39 -485215.222472] Model parameter optimization (eps = 10.000000) [00:47:24 -482538.709696] AUTODETECT spr round 1 (radius: 5) [00:48:13 -403114.103378] AUTODETECT spr round 2 (radius: 10) [00:49:17 -359031.536899] AUTODETECT spr round 3 (radius: 15) [00:50:26 -328364.855588] AUTODETECT spr round 4 (radius: 20) [00:51:46 -321559.431863] AUTODETECT spr round 5 (radius: 25) [00:53:26 -320988.445745] SPR radius for FAST iterations: 25 (autodetect) [00:53:26 -320988.445745] Model parameter optimization (eps = 3.000000) [00:54:08 -315178.617092] FAST spr round 1 (radius: 25) [00:56:00 -299812.915181] FAST spr round 2 (radius: 25) [00:57:24 -299310.681541] FAST spr round 3 (radius: 25) [00:58:21 -299280.851252] FAST spr round 4 (radius: 25) [00:59:07 -299279.873801] FAST spr round 5 (radius: 25) [00:59:49 -299279.873227] Model parameter optimization (eps = 1.000000) [01:00:00 -299271.916705] SLOW spr round 1 (radius: 5) [01:01:30 -299205.963360] SLOW spr round 2 (radius: 5) [01:02:52 -299194.440458] SLOW spr round 3 (radius: 5) [01:04:07 -299193.192184] SLOW spr round 4 (radius: 5) [01:05:21 -299193.191241] SLOW spr round 5 (radius: 10) [01:06:42 -299191.782429] SLOW spr round 6 (radius: 5) [01:08:24 -299191.400155] SLOW spr round 7 (radius: 5) [01:09:51 -299191.399517] SLOW spr round 8 (radius: 10) [01:11:21 -299191.399434] SLOW spr round 9 (radius: 15) [01:14:25 -299191.399411] SLOW spr round 10 (radius: 20) [01:18:55 -299191.399403] SLOW spr round 11 (radius: 25) [01:24:13 -299191.399401] Model parameter optimization (eps = 0.100000) [01:24:19] ML tree search #2, logLikelihood: -299191.161613 [01:24:19 -621458.177318] Initial branch length optimization [01:24:22 -482445.986242] Model parameter optimization (eps = 10.000000) [01:25:13 -480450.199851] AUTODETECT spr round 1 (radius: 5) [01:26:00 -392056.150254] AUTODETECT spr round 2 (radius: 10) [01:27:04 -348432.792523] AUTODETECT spr round 3 (radius: 15) [01:28:19 -324693.237855] AUTODETECT spr round 4 (radius: 20) [01:29:45 -320716.818748] AUTODETECT spr round 5 (radius: 25) [01:31:28 -320609.673064] SPR radius for FAST iterations: 25 (autodetect) [01:31:28 -320609.673064] Model parameter optimization (eps = 3.000000) [01:32:06 -315610.022966] FAST spr round 1 (radius: 25) [01:34:10 -299906.881689] FAST spr round 2 (radius: 25) [01:35:37 -299340.390392] FAST spr round 3 (radius: 25) [01:36:47 -299240.939650] FAST spr round 4 (radius: 25) [01:37:39 -299229.919338] FAST spr round 5 (radius: 25) [01:38:22 -299227.266445] FAST spr round 6 (radius: 25) [01:39:02 -299227.263875] Model parameter optimization (eps = 1.000000) [01:39:14 -299223.111894] SLOW spr round 1 (radius: 5) [01:40:42 -299204.148746] SLOW spr round 2 (radius: 5) [01:41:58 -299204.148073] SLOW spr round 3 (radius: 10) [01:43:22 -299198.471116] SLOW spr round 4 (radius: 5) [01:45:10 -299190.580656] SLOW spr round 5 (radius: 5) [01:46:38 -299188.990449] SLOW spr round 6 (radius: 5) [01:48:02 -299182.630408] SLOW spr round 7 (radius: 5) [01:49:21 -299175.854321] SLOW spr round 8 (radius: 5) [01:50:37 -299170.197421] SLOW spr round 9 (radius: 5) [01:51:50 -299170.196572] SLOW spr round 10 (radius: 10) [01:53:15 -299169.135289] SLOW spr round 11 (radius: 5) [01:54:55 -299169.133005] SLOW spr round 12 (radius: 10) [01:56:44 -299169.132812] SLOW spr round 13 (radius: 15) [01:59:51 -299165.783354] SLOW spr round 14 (radius: 5) [02:01:37 -299165.783293] SLOW spr round 15 (radius: 10) [02:03:33 -299165.783293] SLOW spr round 16 (radius: 15) [02:06:12 -299165.783293] SLOW spr round 17 (radius: 20) [02:11:16 -299165.783293] SLOW spr round 18 (radius: 25) [02:16:18 -299165.783293] Model parameter optimization (eps = 0.100000) [02:16:22] ML tree search #3, logLikelihood: -299165.697890 [02:16:22 -626930.501188] Initial branch length optimization [02:16:25 -487998.574424] Model parameter optimization (eps = 10.000000) [02:17:15 -485397.806483] AUTODETECT spr round 1 (radius: 5) [02:18:02 -390563.255411] AUTODETECT spr round 2 (radius: 10) [02:19:06 -340246.847805] AUTODETECT spr round 3 (radius: 15) [02:20:23 -319817.029947] AUTODETECT spr round 4 (radius: 20) [02:22:00 -315565.967954] AUTODETECT spr round 5 (radius: 25) [02:23:41 -314986.910865] SPR radius for FAST iterations: 25 (autodetect) [02:23:41 -314986.910865] Model parameter optimization (eps = 3.000000) [02:24:19 -309277.569758] FAST spr round 1 (radius: 25) [02:26:18 -299742.398467] FAST spr round 2 (radius: 25) [02:27:39 -299284.697920] FAST spr round 3 (radius: 25) [02:28:39 -299254.301329] FAST spr round 4 (radius: 25) [02:29:24 -299253.284688] FAST spr round 5 (radius: 25) [02:30:05 -299253.283591] Model parameter optimization (eps = 1.000000) [02:30:13 -299249.585566] SLOW spr round 1 (radius: 5) [02:31:45 -299198.351736] SLOW spr round 2 (radius: 5) [02:33:01 -299196.723657] SLOW spr round 3 (radius: 5) [02:34:15 -299196.723462] SLOW spr round 4 (radius: 10) [02:35:38 -299196.723450] SLOW spr round 5 (radius: 15) [02:38:51 -299193.399971] SLOW spr round 6 (radius: 5) [02:40:38 -299193.399907] SLOW spr round 7 (radius: 10) [02:42:31 -299193.399907] SLOW spr round 8 (radius: 15) [02:45:32 -299193.399907] SLOW spr round 9 (radius: 20) [02:50:11 -299193.399907] SLOW spr round 10 (radius: 25) [02:54:59 -299193.399907] Model parameter optimization (eps = 0.100000) [02:55:06] ML tree search #4, logLikelihood: -299193.181406 [02:55:06 -624200.275691] Initial branch length optimization [02:55:09 -486877.327720] Model parameter optimization (eps = 10.000000) [02:55:59 -484309.570105] AUTODETECT spr round 1 (radius: 5) [02:56:47 -395286.379670] AUTODETECT spr round 2 (radius: 10) [02:57:50 -345074.543308] AUTODETECT spr round 3 (radius: 15) [02:59:04 -320848.043154] AUTODETECT spr round 4 (radius: 20) [03:00:39 -316451.433194] AUTODETECT spr round 5 (radius: 25) [03:02:08 -316214.119400] SPR radius for FAST iterations: 25 (autodetect) [03:02:08 -316214.119400] Model parameter optimization (eps = 3.000000) [03:02:42 -310453.686977] FAST spr round 1 (radius: 25) [03:04:43 -299931.119198] FAST spr round 2 (radius: 25) [03:06:08 -299347.978976] FAST spr round 3 (radius: 25) [03:07:17 -299263.227389] FAST spr round 4 (radius: 25) [03:08:08 -299237.527032] FAST spr round 5 (radius: 25) [03:08:51 -299223.714633] FAST spr round 6 (radius: 25) [03:09:32 -299220.587244] FAST spr round 7 (radius: 25) [03:10:11 -299220.585840] Model parameter optimization (eps = 1.000000) [03:10:24 -299211.620103] SLOW spr round 1 (radius: 5) [03:11:46 -299164.447778] SLOW spr round 2 (radius: 5) [03:13:02 -299163.168727] SLOW spr round 3 (radius: 5) [03:14:16 -299163.168533] SLOW spr round 4 (radius: 10) [03:15:41 -299160.975622] SLOW spr round 5 (radius: 5) [03:17:24 -299160.973028] SLOW spr round 6 (radius: 10) [03:19:08 -299160.972921] SLOW spr round 7 (radius: 15) [03:22:02 -299160.972908] SLOW spr round 8 (radius: 20) [03:27:06 -299160.972904] SLOW spr round 9 (radius: 25) [03:31:52 -299160.972903] Model parameter optimization (eps = 0.100000) [03:31:58] ML tree search #5, logLikelihood: -299160.926835 [03:31:58 -622772.796099] Initial branch length optimization [03:32:01 -483225.640422] Model parameter optimization (eps = 10.000000) [03:32:54 -481011.296149] AUTODETECT spr round 1 (radius: 5) [03:33:42 -402891.688073] AUTODETECT spr round 2 (radius: 10) [03:34:42 -349624.971484] AUTODETECT spr round 3 (radius: 15) [03:35:54 -328129.220570] AUTODETECT spr round 4 (radius: 20) [03:37:15 -322792.638991] AUTODETECT spr round 5 (radius: 25) [03:38:50 -318597.626266] SPR radius for FAST iterations: 25 (autodetect) [03:38:50 -318597.626266] Model parameter optimization (eps = 3.000000) [03:39:24 -313299.660718] FAST spr round 1 (radius: 25) [03:41:17 -299617.027108] FAST spr round 2 (radius: 25) [03:42:29 -299275.598378] FAST spr round 3 (radius: 25) [03:43:27 -299248.866192] FAST spr round 4 (radius: 25) [03:44:11 -299248.864018] Model parameter optimization (eps = 1.000000) [03:44:23 -299240.597730] SLOW spr round 1 (radius: 5) [03:45:53 -299177.563744] SLOW spr round 2 (radius: 5) [03:47:11 -299176.951683] SLOW spr round 3 (radius: 5) [03:48:24 -299176.951656] SLOW spr round 4 (radius: 10) [03:49:44 -299176.537737] SLOW spr round 5 (radius: 5) [03:51:22 -299176.535707] SLOW spr round 6 (radius: 10) [03:53:06 -299176.535604] SLOW spr round 7 (radius: 15) [03:55:57 -299176.535597] SLOW spr round 8 (radius: 20) [04:00:37 -299176.535596] SLOW spr round 9 (radius: 25) [04:05:57 -299176.535596] Model parameter optimization (eps = 0.100000) [04:06:04] ML tree search #6, logLikelihood: -299176.446322 [04:06:04 -621657.958462] Initial branch length optimization [04:06:07 -487195.008810] Model parameter optimization (eps = 10.000000) [04:06:52 -484375.160125] AUTODETECT spr round 1 (radius: 5) [04:07:40 -402066.939576] AUTODETECT spr round 2 (radius: 10) [04:08:41 -344610.540591] AUTODETECT spr round 3 (radius: 15) [04:09:54 -323256.460334] AUTODETECT spr round 4 (radius: 20) [04:11:11 -317075.223773] AUTODETECT spr round 5 (radius: 25) [04:12:52 -316689.326723] SPR radius for FAST iterations: 25 (autodetect) [04:12:52 -316689.326723] Model parameter optimization (eps = 3.000000) [04:13:28 -311065.995883] FAST spr round 1 (radius: 25) [04:15:06 -299753.004517] FAST spr round 2 (radius: 25) [04:16:18 -299293.377683] FAST spr round 3 (radius: 25) [04:17:15 -299248.283199] FAST spr round 4 (radius: 25) [04:17:59 -299248.282099] Model parameter optimization (eps = 1.000000) [04:18:11 -299240.842119] SLOW spr round 1 (radius: 5) [04:19:37 -299185.897439] SLOW spr round 2 (radius: 5) [04:20:55 -299184.623964] SLOW spr round 3 (radius: 5) [04:22:10 -299184.621085] SLOW spr round 4 (radius: 10) [04:23:33 -299184.620637] SLOW spr round 5 (radius: 15) [04:26:50 -299183.121398] SLOW spr round 6 (radius: 5) [04:28:37 -299182.743075] SLOW spr round 7 (radius: 5) [04:30:06 -299182.742704] SLOW spr round 8 (radius: 10) [04:31:39 -299182.742683] SLOW spr round 9 (radius: 15) [04:34:49 -299182.742681] SLOW spr round 10 (radius: 20) [04:39:38 -299182.742681] SLOW spr round 11 (radius: 25) [04:44:37 -299182.742680] Model parameter optimization (eps = 0.100000) [04:44:44] ML tree search #7, logLikelihood: -299182.625334 [04:44:44 -626907.099484] Initial branch length optimization [04:44:47 -485324.108910] Model parameter optimization (eps = 10.000000) [04:45:39 -483001.996185] AUTODETECT spr round 1 (radius: 5) [04:46:26 -399412.643347] AUTODETECT spr round 2 (radius: 10) [04:47:29 -343345.633691] AUTODETECT spr round 3 (radius: 15) [04:48:42 -326155.872691] AUTODETECT spr round 4 (radius: 20) [04:50:04 -319645.778554] AUTODETECT spr round 5 (radius: 25) [04:51:46 -319105.336568] SPR radius for FAST iterations: 25 (autodetect) [04:51:46 -319105.336568] Model parameter optimization (eps = 3.000000) [04:52:23 -313437.240115] FAST spr round 1 (radius: 25) [04:54:26 -300149.020669] FAST spr round 2 (radius: 25) [04:55:57 -299259.482219] FAST spr round 3 (radius: 25) [04:56:53 -299237.329704] FAST spr round 4 (radius: 25) [04:57:39 -299237.329093] Model parameter optimization (eps = 1.000000) [04:57:50 -299229.684108] SLOW spr round 1 (radius: 5) [04:59:18 -299186.992437] SLOW spr round 2 (radius: 5) [05:00:37 -299180.521139] SLOW spr round 3 (radius: 5) [05:01:53 -299179.914096] SLOW spr round 4 (radius: 5) [05:03:06 -299179.913929] SLOW spr round 5 (radius: 10) [05:04:29 -299174.883780] SLOW spr round 6 (radius: 5) [05:06:11 -299172.617253] SLOW spr round 7 (radius: 5) [05:07:34 -299172.616628] SLOW spr round 8 (radius: 10) [05:09:02 -299172.616580] SLOW spr round 9 (radius: 15) [05:12:08 -299172.616577] SLOW spr round 10 (radius: 20) [05:16:51 -299172.616576] SLOW spr round 11 (radius: 25) [05:22:05 -299172.616576] Model parameter optimization (eps = 0.100000) [05:22:10] ML tree search #8, logLikelihood: -299172.559932 [05:22:10 -614514.232305] Initial branch length optimization [05:22:13 -481891.848220] Model parameter optimization (eps = 10.000000) [05:22:59 -479761.011128] AUTODETECT spr round 1 (radius: 5) [05:23:46 -389361.755331] AUTODETECT spr round 2 (radius: 10) [05:24:48 -332751.694822] AUTODETECT spr round 3 (radius: 15) [05:26:07 -320085.398162] AUTODETECT spr round 4 (radius: 20) [05:27:44 -317742.921992] AUTODETECT spr round 5 (radius: 25) [05:29:30 -317686.611622] SPR radius for FAST iterations: 25 (autodetect) [05:29:30 -317686.611622] Model parameter optimization (eps = 3.000000) [05:30:02 -312491.736484] FAST spr round 1 (radius: 25) [05:31:38 -299862.736716] FAST spr round 2 (radius: 25) [05:32:49 -299292.900861] FAST spr round 3 (radius: 25) [05:33:47 -299242.987855] FAST spr round 4 (radius: 25) [05:34:35 -299232.336776] FAST spr round 5 (radius: 25) [05:35:17 -299232.335753] Model parameter optimization (eps = 1.000000) [05:35:30 -299220.897783] SLOW spr round 1 (radius: 5) [05:36:57 -299180.838527] SLOW spr round 2 (radius: 5) [05:38:17 -299175.211574] SLOW spr round 3 (radius: 5) [05:39:31 -299174.488532] SLOW spr round 4 (radius: 5) [05:40:44 -299174.488438] SLOW spr round 5 (radius: 10) [05:42:03 -299174.488419] SLOW spr round 6 (radius: 15) [05:45:29 -299174.488414] SLOW spr round 7 (radius: 20) [05:50:31 -299174.488412] SLOW spr round 8 (radius: 25) [05:55:51 -299174.488411] Model parameter optimization (eps = 0.100000) [05:55:55] ML tree search #9, logLikelihood: -299174.460853 [05:55:55 -620307.047672] Initial branch length optimization [05:55:59 -483616.806246] Model parameter optimization (eps = 10.000000) [05:56:43 -481577.430615] AUTODETECT spr round 1 (radius: 5) [05:57:31 -389076.193245] AUTODETECT spr round 2 (radius: 10) [05:58:35 -332900.826438] AUTODETECT spr round 3 (radius: 15) [05:59:55 -318615.776356] AUTODETECT spr round 4 (radius: 20) [06:01:22 -314937.849443] AUTODETECT spr round 5 (radius: 25) [06:03:19 -314877.051004] SPR radius for FAST iterations: 25 (autodetect) [06:03:19 -314877.051004] Model parameter optimization (eps = 3.000000) [06:03:52 -309930.749423] FAST spr round 1 (radius: 25) [06:05:51 -299712.426151] FAST spr round 2 (radius: 25) [06:07:16 -299250.363250] FAST spr round 3 (radius: 25) [06:08:11 -299221.990549] FAST spr round 4 (radius: 25) [06:08:54 -299221.989386] Model parameter optimization (eps = 1.000000) [06:09:05 -299214.663763] SLOW spr round 1 (radius: 5) [06:10:30 -299188.767090] SLOW spr round 2 (radius: 5) [06:11:51 -299185.251323] SLOW spr round 3 (radius: 5) [06:13:07 -299182.712268] SLOW spr round 4 (radius: 5) [06:14:20 -299182.710303] SLOW spr round 5 (radius: 10) [06:15:43 -299182.710058] SLOW spr round 6 (radius: 15) [06:18:51 -299182.710038] SLOW spr round 7 (radius: 20) [06:23:48 -299182.710037] SLOW spr round 8 (radius: 25) [06:28:37 -299182.710037] Model parameter optimization (eps = 0.100000) [06:28:43] ML tree search #10, logLikelihood: -299182.682119 [06:28:43 -617510.364387] Initial branch length optimization [06:28:46 -481320.993848] Model parameter optimization (eps = 10.000000) [06:29:31 -479480.596518] AUTODETECT spr round 1 (radius: 5) [06:30:14 -388056.977195] AUTODETECT spr round 2 (radius: 10) [06:31:04 -340772.447784] AUTODETECT spr round 3 (radius: 15) [06:32:17 -319007.688881] AUTODETECT spr round 4 (radius: 20) [06:33:36 -313794.140929] AUTODETECT spr round 5 (radius: 25) [06:35:01 -313460.188948] SPR radius for FAST iterations: 25 (autodetect) [06:35:01 -313460.188948] Model parameter optimization (eps = 3.000000) [06:35:32 -310395.985257] FAST spr round 1 (radius: 25) [06:37:18 -299695.093653] FAST spr round 2 (radius: 25) [06:38:35 -299279.203581] FAST spr round 3 (radius: 25) [06:39:38 -299229.774513] FAST spr round 4 (radius: 25) [06:40:22 -299223.747783] FAST spr round 5 (radius: 25) [06:41:03 -299223.745956] Model parameter optimization (eps = 1.000000) [06:41:13 -299214.601656] SLOW spr round 1 (radius: 5) [06:42:41 -299168.314326] SLOW spr round 2 (radius: 5) [06:44:01 -299163.022199] SLOW spr round 3 (radius: 5) [06:45:13 -299163.021441] SLOW spr round 4 (radius: 10) [06:46:35 -299163.021378] SLOW spr round 5 (radius: 15) [06:49:50 -299159.682424] SLOW spr round 6 (radius: 5) [06:51:35 -299159.682360] SLOW spr round 7 (radius: 10) [06:53:30 -299159.682360] SLOW spr round 8 (radius: 15) [06:56:28 -299159.682360] SLOW spr round 9 (radius: 20) [07:01:23 -299159.682360] SLOW spr round 10 (radius: 25) [07:06:10 -299159.682360] Model parameter optimization (eps = 0.100000) [07:06:18] ML tree search #11, logLikelihood: -299159.553090 [07:06:18 -620161.598222] Initial branch length optimization [07:06:21 -483881.267184] Model parameter optimization (eps = 10.000000) [07:07:07 -481598.906133] AUTODETECT spr round 1 (radius: 5) [07:07:52 -389191.620526] AUTODETECT spr round 2 (radius: 10) [07:08:53 -343252.922940] AUTODETECT spr round 3 (radius: 15) [07:10:06 -322281.374393] AUTODETECT spr round 4 (radius: 20) [07:11:30 -317163.465651] AUTODETECT spr round 5 (radius: 25) [07:13:16 -316927.165619] SPR radius for FAST iterations: 25 (autodetect) [07:13:16 -316927.165619] Model parameter optimization (eps = 3.000000) [07:13:50 -311742.153443] FAST spr round 1 (radius: 25) [07:15:41 -299686.770798] FAST spr round 2 (radius: 25) [07:17:04 -299247.177571] FAST spr round 3 (radius: 25) [07:18:02 -299238.184865] FAST spr round 4 (radius: 25) [07:18:46 -299235.868345] FAST spr round 5 (radius: 25) [07:19:26 -299235.865980] Model parameter optimization (eps = 1.000000) [07:19:35 -299228.203797] SLOW spr round 1 (radius: 5) [07:21:05 -299180.935736] SLOW spr round 2 (radius: 5) [07:22:20 -299179.097997] SLOW spr round 3 (radius: 5) [07:23:31 -299179.096186] SLOW spr round 4 (radius: 10) [07:24:48 -299179.095900] SLOW spr round 5 (radius: 15) [07:27:49 -299179.095853] SLOW spr round 6 (radius: 20) [07:32:26 -299179.095845] SLOW spr round 7 (radius: 25) [07:37:44 -299179.095843] Model parameter optimization (eps = 0.100000) [07:37:49] ML tree search #12, logLikelihood: -299179.087104 [07:37:49 -624285.182890] Initial branch length optimization [07:37:52 -486290.363508] Model parameter optimization (eps = 10.000000) [07:38:38 -484218.546324] AUTODETECT spr round 1 (radius: 5) [07:39:24 -402168.993584] AUTODETECT spr round 2 (radius: 10) [07:40:25 -338217.757819] AUTODETECT spr round 3 (radius: 15) [07:41:33 -323774.151843] AUTODETECT spr round 4 (radius: 20) [07:43:00 -320308.250616] AUTODETECT spr round 5 (radius: 25) [07:44:35 -318681.092922] SPR radius for FAST iterations: 25 (autodetect) [07:44:35 -318681.092922] Model parameter optimization (eps = 3.000000) [07:45:11 -313592.577583] FAST spr round 1 (radius: 25) [07:47:06 -299856.778828] FAST spr round 2 (radius: 25) [07:48:27 -299378.908728] FAST spr round 3 (radius: 25) [07:49:34 -299247.108715] FAST spr round 4 (radius: 25) [07:50:28 -299232.758937] FAST spr round 5 (radius: 25) [07:51:14 -299224.185357] FAST spr round 6 (radius: 25) [07:51:52 -299224.185186] Model parameter optimization (eps = 1.000000) [07:52:04 -299217.019193] SLOW spr round 1 (radius: 5) [07:53:33 -299172.425162] SLOW spr round 2 (radius: 5) [07:54:52 -299160.500825] SLOW spr round 3 (radius: 5) [07:56:08 -299159.026420] SLOW spr round 4 (radius: 5) [07:57:19 -299159.026408] SLOW spr round 5 (radius: 10) [07:58:36 -299157.441666] SLOW spr round 6 (radius: 5) [08:00:14 -299156.558904] SLOW spr round 7 (radius: 5) [08:01:36 -299156.557699] SLOW spr round 8 (radius: 10) [08:03:00 -299156.557631] SLOW spr round 9 (radius: 15) [08:05:57 -299156.557627] SLOW spr round 10 (radius: 20) [08:10:46 -299156.557625] SLOW spr round 11 (radius: 25) [08:15:43 -299156.557625] Model parameter optimization (eps = 0.100000) [08:15:49] ML tree search #13, logLikelihood: -299156.411111 [08:15:49 -625874.661269] Initial branch length optimization [08:15:52 -483966.741882] Model parameter optimization (eps = 10.000000) [08:16:49 -481576.884448] AUTODETECT spr round 1 (radius: 5) [08:17:34 -383639.113422] AUTODETECT spr round 2 (radius: 10) [08:18:34 -339171.286459] AUTODETECT spr round 3 (radius: 15) [08:19:44 -321530.959284] AUTODETECT spr round 4 (radius: 20) [08:21:11 -316232.742736] AUTODETECT spr round 5 (radius: 25) [08:22:42 -315374.850449] SPR radius for FAST iterations: 25 (autodetect) [08:22:43 -315374.850449] Model parameter optimization (eps = 3.000000) [08:23:16 -310188.175470] FAST spr round 1 (radius: 25) [08:25:11 -299731.962417] FAST spr round 2 (radius: 25) [08:26:35 -299299.328181] FAST spr round 3 (radius: 25) [08:27:39 -299252.661754] FAST spr round 4 (radius: 25) [08:28:23 -299250.416794] FAST spr round 5 (radius: 25) [08:29:03 -299250.415236] Model parameter optimization (eps = 1.000000) [08:29:15 -299241.590358] SLOW spr round 1 (radius: 5) [08:30:42 -299196.617757] SLOW spr round 2 (radius: 5) [08:32:02 -299184.753096] SLOW spr round 3 (radius: 5) [08:33:15 -299182.705734] SLOW spr round 4 (radius: 5) [08:34:28 -299181.851113] SLOW spr round 5 (radius: 5) [08:35:39 -299180.245554] SLOW spr round 6 (radius: 5) [08:36:48 -299180.245396] SLOW spr round 7 (radius: 10) [08:38:06 -299178.287352] SLOW spr round 8 (radius: 5) [08:39:45 -299177.678155] SLOW spr round 9 (radius: 5) [08:41:08 -299177.677814] SLOW spr round 10 (radius: 10) [08:42:31 -299177.677731] SLOW spr round 11 (radius: 15) [08:45:31 -299177.677705] SLOW spr round 12 (radius: 20) [08:50:21 -299177.677696] SLOW spr round 13 (radius: 25) [08:55:16 -299177.677694] Model parameter optimization (eps = 0.100000) [08:55:23] ML tree search #14, logLikelihood: -299177.386983 [08:55:23 -613159.120257] Initial branch length optimization [08:55:27 -488653.354695] Model parameter optimization (eps = 10.000000) [08:56:10 -486271.064152] AUTODETECT spr round 1 (radius: 5) [08:56:56 -396676.021803] AUTODETECT spr round 2 (radius: 10) [08:57:54 -341126.349302] AUTODETECT spr round 3 (radius: 15) [08:59:16 -322873.761298] AUTODETECT spr round 4 (radius: 20) [09:00:51 -317607.821063] AUTODETECT spr round 5 (radius: 25) [09:02:35 -317462.274636] SPR radius for FAST iterations: 25 (autodetect) [09:02:35 -317462.274636] Model parameter optimization (eps = 3.000000) [09:03:11 -312142.427238] FAST spr round 1 (radius: 25) [09:05:11 -299800.708693] FAST spr round 2 (radius: 25) [09:06:30 -299355.820531] FAST spr round 3 (radius: 25) [09:07:34 -299269.533916] FAST spr round 4 (radius: 25) [09:08:25 -299258.173115] FAST spr round 5 (radius: 25) [09:09:14 -299236.663344] FAST spr round 6 (radius: 25) [09:09:54 -299236.663070] Model parameter optimization (eps = 1.000000) [09:10:09 -299223.534731] SLOW spr round 1 (radius: 5) [09:11:32 -299177.480438] SLOW spr round 2 (radius: 5) [09:12:48 -299170.770651] SLOW spr round 3 (radius: 5) [09:14:01 -299169.665952] SLOW spr round 4 (radius: 5) [09:15:13 -299169.664426] SLOW spr round 5 (radius: 10) [09:16:34 -299169.664259] SLOW spr round 6 (radius: 15) [09:19:43 -299169.664229] SLOW spr round 7 (radius: 20) [09:25:05 -299169.664222] SLOW spr round 8 (radius: 25) [09:30:02 -299169.664220] Model parameter optimization (eps = 0.100000) [09:30:06] ML tree search #15, logLikelihood: -299169.596910 [09:30:06 -629347.735236] Initial branch length optimization [09:30:09 -484467.578194] Model parameter optimization (eps = 10.000000) [09:30:55 -482044.122573] AUTODETECT spr round 1 (radius: 5) [09:31:41 -394547.251906] AUTODETECT spr round 2 (radius: 10) [09:32:42 -341199.495124] AUTODETECT spr round 3 (radius: 15) [09:33:54 -322861.676274] AUTODETECT spr round 4 (radius: 20) [09:35:08 -319729.758416] AUTODETECT spr round 5 (radius: 25) [09:36:36 -319039.658010] SPR radius for FAST iterations: 25 (autodetect) [09:36:36 -319039.658010] Model parameter optimization (eps = 3.000000) [09:37:15 -313271.086123] FAST spr round 1 (radius: 25) [09:39:06 -300070.847123] FAST spr round 2 (radius: 25) [09:40:27 -299270.829932] FAST spr round 3 (radius: 25) [09:41:28 -299240.160030] FAST spr round 4 (radius: 25) [09:42:16 -299234.686283] FAST spr round 5 (radius: 25) [09:42:58 -299230.481774] FAST spr round 6 (radius: 25) [09:43:37 -299230.480913] Model parameter optimization (eps = 1.000000) [09:43:49 -299227.004131] SLOW spr round 1 (radius: 5) [09:45:12 -299179.592015] SLOW spr round 2 (radius: 5) [09:46:26 -299177.090957] SLOW spr round 3 (radius: 5) [09:47:38 -299173.574623] SLOW spr round 4 (radius: 5) [09:48:46 -299173.573912] SLOW spr round 5 (radius: 10) [09:50:05 -299173.191396] SLOW spr round 6 (radius: 5) [09:51:43 -299173.186885] SLOW spr round 7 (radius: 10) [09:53:27 -299173.185679] SLOW spr round 8 (radius: 15) [09:56:28 -299169.905609] SLOW spr round 9 (radius: 5) [09:58:13 -299169.904290] SLOW spr round 10 (radius: 10) [10:00:04 -299169.904211] SLOW spr round 11 (radius: 15) [10:03:06 -299169.904191] SLOW spr round 12 (radius: 20) [10:08:03 -299169.904185] SLOW spr round 13 (radius: 25) [10:12:50 -299169.904183] Model parameter optimization (eps = 0.100000) [10:12:58] ML tree search #16, logLikelihood: -299169.640512 [10:12:58 -621287.673701] Initial branch length optimization [10:13:01 -485959.249817] Model parameter optimization (eps = 10.000000) [10:13:47 -483307.375232] AUTODETECT spr round 1 (radius: 5) [10:14:32 -388692.843884] AUTODETECT spr round 2 (radius: 10) [10:15:32 -335686.452767] AUTODETECT spr round 3 (radius: 15) [10:16:34 -320734.784412] AUTODETECT spr round 4 (radius: 20) [10:17:58 -316282.616758] AUTODETECT spr round 5 (radius: 25) [10:19:29 -315723.266245] SPR radius for FAST iterations: 25 (autodetect) [10:19:29 -315723.266245] Model parameter optimization (eps = 3.000000) [10:20:05 -310026.916799] FAST spr round 1 (radius: 25) [10:22:04 -299602.718127] FAST spr round 2 (radius: 25) [10:23:21 -299316.775489] FAST spr round 3 (radius: 25) [10:24:22 -299273.012201] FAST spr round 4 (radius: 25) [10:25:06 -299265.050584] FAST spr round 5 (radius: 25) [10:25:47 -299260.617303] FAST spr round 6 (radius: 25) [10:26:25 -299260.616409] Model parameter optimization (eps = 1.000000) [10:26:36 -299248.858056] SLOW spr round 1 (radius: 5) [10:28:01 -299191.928253] SLOW spr round 2 (radius: 5) [10:29:14 -299186.316461] SLOW spr round 3 (radius: 5) [10:30:20 -299184.950866] SLOW spr round 4 (radius: 5) [10:31:26 -299184.934590] SLOW spr round 5 (radius: 10) [10:32:32 -299181.268281] SLOW spr round 6 (radius: 5) [10:33:53 -299178.255017] SLOW spr round 7 (radius: 5) [10:35:04 -299178.253585] SLOW spr round 8 (radius: 10) [10:36:13 -299178.253144] SLOW spr round 9 (radius: 15) [10:38:54 -299178.253004] SLOW spr round 10 (radius: 20) [10:43:29 -299178.252960] SLOW spr round 11 (radius: 25) [10:48:21 -299178.252946] Model parameter optimization (eps = 0.100000) [10:48:26] ML tree search #17, logLikelihood: -299178.215769 [10:48:26 -619020.544662] Initial branch length optimization [10:48:28 -481673.446159] Model parameter optimization (eps = 10.000000) [10:49:11 -479448.431295] AUTODETECT spr round 1 (radius: 5) [10:49:55 -391549.261665] AUTODETECT spr round 2 (radius: 10) [10:50:55 -339048.427436] AUTODETECT spr round 3 (radius: 15) [10:52:03 -321861.190561] AUTODETECT spr round 4 (radius: 20) [10:53:32 -317181.452855] AUTODETECT spr round 5 (radius: 25) [10:55:16 -316955.756519] SPR radius for FAST iterations: 25 (autodetect) [10:55:16 -316955.756519] Model parameter optimization (eps = 3.000000) [10:55:50 -312269.618031] FAST spr round 1 (radius: 25) [10:57:47 -299749.046791] FAST spr round 2 (radius: 25) [10:59:09 -299284.049423] FAST spr round 3 (radius: 25) [11:00:07 -299233.402567] FAST spr round 4 (radius: 25) [11:00:44 -299233.401191] Model parameter optimization (eps = 1.000000) [11:00:53 -299227.843370] SLOW spr round 1 (radius: 5) [11:02:06 -299176.684699] SLOW spr round 2 (radius: 5) [11:03:08 -299175.393372] SLOW spr round 3 (radius: 5) [11:04:10 -299168.243855] SLOW spr round 4 (radius: 5) [11:05:08 -299168.243841] SLOW spr round 5 (radius: 10) [11:06:14 -299168.243837] SLOW spr round 6 (radius: 15) [11:08:48 -299164.897330] SLOW spr round 7 (radius: 5) [11:10:12 -299164.897267] SLOW spr round 8 (radius: 10) [11:11:43 -299164.897267] SLOW spr round 9 (radius: 15) [11:14:05 -299164.897267] SLOW spr round 10 (radius: 20) [11:18:03 -299164.897267] SLOW spr round 11 (radius: 25) [11:21:59 -299164.897267] Model parameter optimization (eps = 0.100000) [11:22:03] ML tree search #18, logLikelihood: -299164.856846 [11:22:03 -627923.407814] Initial branch length optimization [11:22:06 -486110.499642] Model parameter optimization (eps = 10.000000) [11:22:44 -483393.817911] AUTODETECT spr round 1 (radius: 5) [11:23:22 -398303.817385] AUTODETECT spr round 2 (radius: 10) [11:24:11 -350139.826557] AUTODETECT spr round 3 (radius: 15) [11:25:05 -326576.540237] AUTODETECT spr round 4 (radius: 20) [11:26:13 -319717.767943] AUTODETECT spr round 5 (radius: 25) [11:27:38 -318823.150878] SPR radius for FAST iterations: 25 (autodetect) [11:27:38 -318823.150878] Model parameter optimization (eps = 3.000000) [11:28:12 -313127.807089] FAST spr round 1 (radius: 25) [11:29:50 -300003.757283] FAST spr round 2 (radius: 25) [11:30:57 -299271.875104] FAST spr round 3 (radius: 25) [11:31:58 -299239.466730] FAST spr round 4 (radius: 25) [11:32:42 -299237.292298] FAST spr round 5 (radius: 25) [11:33:22 -299237.291599] Model parameter optimization (eps = 1.000000) [11:33:32 -299229.238482] SLOW spr round 1 (radius: 5) [11:35:01 -299177.329133] SLOW spr round 2 (radius: 5) [11:36:21 -299170.599376] SLOW spr round 3 (radius: 5) [11:37:33 -299170.596863] SLOW spr round 4 (radius: 10) [11:38:56 -299169.538161] SLOW spr round 5 (radius: 5) [11:40:34 -299166.382918] SLOW spr round 6 (radius: 5) [11:41:57 -299166.380132] SLOW spr round 7 (radius: 10) [11:43:26 -299166.379378] SLOW spr round 8 (radius: 15) [11:46:28 -299166.379175] SLOW spr round 9 (radius: 20) [11:51:10 -299166.379120] SLOW spr round 10 (radius: 25) [11:55:51 -299166.379104] Model parameter optimization (eps = 0.100000) [11:55:56] ML tree search #19, logLikelihood: -299166.333461 [11:55:56 -619245.232199] Initial branch length optimization [11:55:58 -480746.605689] Model parameter optimization (eps = 10.000000) [11:56:47 -478119.759205] AUTODETECT spr round 1 (radius: 5) [11:57:32 -397439.696288] AUTODETECT spr round 2 (radius: 10) [11:58:29 -344955.685912] AUTODETECT spr round 3 (radius: 15) [11:59:34 -319779.751493] AUTODETECT spr round 4 (radius: 20) [12:00:54 -315633.809960] AUTODETECT spr round 5 (radius: 25) [12:02:44 -315427.257397] SPR radius for FAST iterations: 25 (autodetect) [12:02:44 -315427.257397] Model parameter optimization (eps = 3.000000) [12:03:17 -310228.266129] FAST spr round 1 (radius: 25) [12:05:15 -299589.947323] FAST spr round 2 (radius: 25) [12:06:37 -299318.967978] FAST spr round 3 (radius: 25) [12:07:42 -299277.074091] FAST spr round 4 (radius: 25) [12:08:37 -299239.356380] FAST spr round 5 (radius: 25) [12:09:18 -299238.971152] FAST spr round 6 (radius: 25) [12:09:58 -299235.607808] FAST spr round 7 (radius: 25) [12:10:35 -299235.607715] Model parameter optimization (eps = 1.000000) [12:10:43 -299228.972498] SLOW spr round 1 (radius: 5) [12:12:07 -299180.868176] SLOW spr round 2 (radius: 5) [12:13:17 -299180.867461] SLOW spr round 3 (radius: 10) [12:14:36 -299178.026687] SLOW spr round 4 (radius: 5) [12:16:12 -299175.107754] SLOW spr round 5 (radius: 5) [12:17:33 -299175.107439] SLOW spr round 6 (radius: 10) [12:19:01 -299174.625585] SLOW spr round 7 (radius: 5) [12:20:37 -299172.505823] SLOW spr round 8 (radius: 5) [12:21:57 -299172.504771] SLOW spr round 9 (radius: 10) [12:23:24 -299166.618658] SLOW spr round 10 (radius: 5) [12:25:02 -299158.959084] SLOW spr round 11 (radius: 5) [12:26:21 -299158.371961] SLOW spr round 12 (radius: 5) [12:27:34 -299158.371176] SLOW spr round 13 (radius: 10) [12:28:54 -299158.371119] SLOW spr round 14 (radius: 15) [12:31:59 -299158.371115] SLOW spr round 15 (radius: 20) [12:37:05 -299158.371115] SLOW spr round 16 (radius: 25) [12:41:55 -299158.371115] Model parameter optimization (eps = 0.100000) [12:42:03] ML tree search #20, logLikelihood: -299158.206145 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.082624,0.644054) (0.049250,1.193604) (0.310928,0.835104) (0.557198,1.127684) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -299156.411111 AIC score: 599926.822222 / AICc score: 600631.366793 / BIC score: 604676.586473 Free parameters (model + branch lengths): 807 Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/3_mltree/Q92954.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/3_mltree/Q92954.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/3_mltree/Q92954.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q92954/3_mltree/Q92954.raxml.log Analysis started: 06-Jul-2021 04:06:54 / finished: 06-Jul-2021 16:48:57 Elapsed time: 45723.932 seconds Consumed energy: 3155.426 Wh (= 16 km in an electric car, or 79 km with an e-scooter!)