RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 02-Jul-2021 01:48:04 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/2_msa/Q8WVF1_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/3_mltree/Q8WVF1 --seed 2 --threads 6 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (6 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/2_msa/Q8WVF1_trimmed_msa.fasta [00:00:00] Loaded alignment with 228 taxa and 378 sites WARNING: Sequences tr_W2QFJ8_W2QFJ8_PHYPN_761204 and tr_A0A0W8C668_A0A0W8C668_PHYNI_4790 are exactly identical! WARNING: Sequences tr_W2QFJ8_W2QFJ8_PHYPN_761204 and tr_W2JDM0_W2JDM0_PHYPR_4792 are exactly identical! WARNING: Sequences tr_A0A0V1CKQ1_A0A0V1CKQ1_TRIBR_45882 and tr_A0A0V1NP49_A0A0V1NP49_9BILA_92180 are exactly identical! WARNING: Sequences tr_A0A0V1CKQ1_A0A0V1CKQ1_TRIBR_45882 and tr_A0A0V0U3W5_A0A0V0U3W5_9BILA_144512 are exactly identical! WARNING: Sequences tr_A0A1I7UPC6_A0A1I7UPC6_9PELO_1561998 and tr_A0A1I7UPC7_A0A1I7UPC7_9PELO_1561998 are exactly identical! WARNING: Sequences tr_A0A2K6DZI6_A0A2K6DZI6_MACNE_9545 and tr_A0A2K5XLK9_A0A2K5XLK9_MANLE_9568 are exactly identical! WARNING: Duplicate sequences found: 6 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/3_mltree/Q8WVF1.raxml.reduced.phy Alignment comprises 1 partitions and 378 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 378 / 378 Gaps: 11.42 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/3_mltree/Q8WVF1.raxml.rba Parallelization scheme autoconfig: 3 worker(s) x 2 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 228 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 189 / 15120 [00:00:00] Data distribution: max. searches per worker: 7 Starting ML tree search with 20 distinct starting trees [00:00:00 -123535.852602] Initial branch length optimization [00:00:00 -96406.001900] Model parameter optimization (eps = 10.000000) [00:00:09 -96196.625959] AUTODETECT spr round 1 (radius: 5) [00:00:19 -77575.529015] AUTODETECT spr round 2 (radius: 10) [00:00:32 -69411.922586] AUTODETECT spr round 3 (radius: 15) [00:00:52 -59036.126733] AUTODETECT spr round 4 (radius: 20) [00:01:13 -57977.415337] AUTODETECT spr round 5 (radius: 25) [00:01:33 -57835.159275] SPR radius for FAST iterations: 25 (autodetect) [00:01:33 -57835.159275] Model parameter optimization (eps = 3.000000) [00:01:41 -57765.508609] FAST spr round 1 (radius: 25) [00:02:01 -52523.390687] FAST spr round 2 (radius: 25) [00:02:14 -52362.977392] FAST spr round 3 (radius: 25) [00:02:25 -52348.090915] FAST spr round 4 (radius: 25) [00:02:35 -52343.245240] FAST spr round 5 (radius: 25) [00:02:44 -52342.017600] FAST spr round 6 (radius: 25) [00:02:53 -52342.017536] Model parameter optimization (eps = 1.000000) [00:02:58 -52336.520287] SLOW spr round 1 (radius: 5) [00:03:16 -52325.125259] SLOW spr round 2 (radius: 5) [00:03:34 -52325.124393] SLOW spr round 3 (radius: 10) [00:03:51 -52325.059914] SLOW spr round 4 (radius: 15) [00:04:28 -52325.059765] SLOW spr round 5 (radius: 20) [00:05:04 -52325.059762] SLOW spr round 6 (radius: 25) [00:05:37 -52325.059762] Model parameter optimization (eps = 0.100000) [00:05:39] [worker #0] ML tree search #1, logLikelihood: -52324.775142 [00:05:39 -123628.223531] Initial branch length optimization [00:05:40 -95817.712500] Model parameter optimization (eps = 10.000000) [00:05:49 -95574.157459] AUTODETECT spr round 1 (radius: 5) [00:06:00 -79862.155504] AUTODETECT spr round 2 (radius: 10) [00:06:14 -67191.819432] AUTODETECT spr round 3 (radius: 15) [00:06:33 -59898.238347] AUTODETECT spr round 4 (radius: 20) [00:06:33] [worker #2] ML tree search #3, logLikelihood: -52320.731230 [00:06:58 -58114.819108] AUTODETECT spr round 5 (radius: 25) [00:07:14] [worker #1] ML tree search #2, logLikelihood: -52316.728177 [00:07:18 -58042.536019] SPR radius for FAST iterations: 25 (autodetect) [00:07:18 -58042.536019] Model parameter optimization (eps = 3.000000) [00:07:25 -57979.867965] FAST spr round 1 (radius: 25) [00:07:44 -52566.103285] FAST spr round 2 (radius: 25) [00:07:59 -52362.213778] FAST spr round 3 (radius: 25) [00:08:10 -52341.638593] FAST spr round 4 (radius: 25) [00:08:20 -52341.637311] Model parameter optimization (eps = 1.000000) [00:08:23 -52339.966953] SLOW spr round 1 (radius: 5) [00:08:43 -52334.628089] SLOW spr round 2 (radius: 5) [00:09:01 -52334.627828] SLOW spr round 3 (radius: 10) [00:09:18 -52333.467480] SLOW spr round 4 (radius: 5) [00:09:42 -52332.142889] SLOW spr round 5 (radius: 5) [00:10:01 -52331.351311] SLOW spr round 6 (radius: 5) [00:10:19 -52331.351173] SLOW spr round 7 (radius: 10) [00:10:37 -52331.351170] SLOW spr round 8 (radius: 15) [00:11:08 -52331.351170] SLOW spr round 9 (radius: 20) [00:11:41 -52331.351170] SLOW spr round 10 (radius: 25) [00:11:43] [worker #2] ML tree search #6, logLikelihood: -52319.896046 [00:12:13 -52331.351170] Model parameter optimization (eps = 0.100000) [00:12:16] [worker #0] ML tree search #4, logLikelihood: -52331.035494 [00:12:16 -124299.152010] Initial branch length optimization [00:12:16 -95701.356067] Model parameter optimization (eps = 10.000000) [00:12:25 -95471.109045] AUTODETECT spr round 1 (radius: 5) [00:12:35 -78717.652503] AUTODETECT spr round 2 (radius: 10) [00:12:49 -66158.961438] AUTODETECT spr round 3 (radius: 15) [00:13:05 -59636.606453] AUTODETECT spr round 4 (radius: 20) [00:13:26 -55716.937332] AUTODETECT spr round 5 (radius: 25) [00:13:45 -55552.599978] SPR radius for FAST iterations: 25 (autodetect) [00:13:45 -55552.599978] Model parameter optimization (eps = 3.000000) [00:13:52 -55491.516864] FAST spr round 1 (radius: 25) [00:14:08] [worker #1] ML tree search #5, logLikelihood: -52317.182706 [00:14:11 -52417.057429] FAST spr round 2 (radius: 25) [00:14:25 -52351.700994] FAST spr round 3 (radius: 25) [00:14:36 -52336.271907] FAST spr round 4 (radius: 25) [00:14:45 -52336.271858] Model parameter optimization (eps = 1.000000) [00:14:49 -52334.453540] SLOW spr round 1 (radius: 5) [00:15:08 -52331.794745] SLOW spr round 2 (radius: 5) [00:15:26 -52331.776692] SLOW spr round 3 (radius: 10) [00:15:44 -52331.775899] SLOW spr round 4 (radius: 15) [00:16:16 -52331.775834] SLOW spr round 5 (radius: 20) [00:16:52 -52331.775821] SLOW spr round 6 (radius: 25) [00:17:25 -52331.775817] Model parameter optimization (eps = 0.100000) [00:17:28] [worker #0] ML tree search #7, logLikelihood: -52330.847419 [00:17:29 -123688.946005] Initial branch length optimization [00:17:29 -96208.126508] Model parameter optimization (eps = 10.000000) [00:17:39 -95966.853870] AUTODETECT spr round 1 (radius: 5) [00:17:49 -80023.210991] AUTODETECT spr round 2 (radius: 10) [00:17:56] [worker #2] ML tree search #9, logLikelihood: -52336.565988 [00:18:03 -67042.685466] AUTODETECT spr round 3 (radius: 15) [00:18:24 -58442.318998] AUTODETECT spr round 4 (radius: 20) [00:18:45 -57382.105311] AUTODETECT spr round 5 (radius: 25) [00:19:06 -57380.398878] SPR radius for FAST iterations: 25 (autodetect) [00:19:06 -57380.398878] Model parameter optimization (eps = 3.000000) [00:19:14 -57301.908315] FAST spr round 1 (radius: 25) [00:19:31 -52454.896306] FAST spr round 2 (radius: 25) [00:19:45] [worker #1] ML tree search #8, logLikelihood: -52322.755341 [00:19:46 -52385.323158] FAST spr round 3 (radius: 25) [00:19:58 -52367.769678] FAST spr round 4 (radius: 25) [00:20:08 -52354.610761] FAST spr round 5 (radius: 25) [00:20:18 -52348.748050] FAST spr round 6 (radius: 25) [00:20:27 -52345.270583] FAST spr round 7 (radius: 25) [00:20:37 -52342.448331] FAST spr round 8 (radius: 25) [00:20:46 -52342.447869] Model parameter optimization (eps = 1.000000) [00:20:50 -52335.574408] SLOW spr round 1 (radius: 5) [00:21:09 -52326.878791] SLOW spr round 2 (radius: 5) [00:21:27 -52323.059144] SLOW spr round 3 (radius: 5) [00:21:44 -52322.826952] SLOW spr round 4 (radius: 5) [00:22:01 -52322.826858] SLOW spr round 5 (radius: 10) [00:22:19 -52322.826857] SLOW spr round 6 (radius: 15) [00:22:56 -52322.826856] SLOW spr round 7 (radius: 20) [00:23:35 -52322.826856] SLOW spr round 8 (radius: 25) [00:23:49] [worker #2] ML tree search #12, logLikelihood: -52329.392069 [00:24:08 -52322.826856] Model parameter optimization (eps = 0.100000) [00:24:10] [worker #0] ML tree search #10, logLikelihood: -52322.780344 [00:24:10 -122144.156489] Initial branch length optimization [00:24:10 -95233.229826] Model parameter optimization (eps = 10.000000) [00:24:19 -95009.614356] AUTODETECT spr round 1 (radius: 5) [00:24:29 -79331.234787] AUTODETECT spr round 2 (radius: 10) [00:24:43 -66886.442094] AUTODETECT spr round 3 (radius: 15) [00:25:02 -57449.522242] AUTODETECT spr round 4 (radius: 20) [00:25:25 -55193.401224] AUTODETECT spr round 5 (radius: 25) [00:25:36] [worker #1] ML tree search #11, logLikelihood: -52330.355071 [00:25:42 -55193.005324] SPR radius for FAST iterations: 25 (autodetect) [00:25:42 -55193.005324] Model parameter optimization (eps = 3.000000) [00:25:49 -55108.163349] FAST spr round 1 (radius: 25) [00:26:06 -52480.750663] FAST spr round 2 (radius: 25) [00:26:20 -52370.190163] FAST spr round 3 (radius: 25) [00:26:33 -52338.053736] FAST spr round 4 (radius: 25) [00:26:42 -52338.053506] Model parameter optimization (eps = 1.000000) [00:26:46 -52332.916946] SLOW spr round 1 (radius: 5) [00:27:06 -52324.046937] SLOW spr round 2 (radius: 5) [00:27:23 -52323.975981] SLOW spr round 3 (radius: 10) [00:27:40 -52323.450961] SLOW spr round 4 (radius: 5) [00:28:04 -52323.253011] SLOW spr round 5 (radius: 5) [00:28:24 -52323.252964] SLOW spr round 6 (radius: 10) [00:28:42 -52323.252963] SLOW spr round 7 (radius: 15) [00:29:18 -52323.252962] SLOW spr round 8 (radius: 20) [00:29:55 -52323.252962] SLOW spr round 9 (radius: 25) [00:30:11] [worker #2] ML tree search #15, logLikelihood: -52323.950614 [00:30:29 -52323.252962] Model parameter optimization (eps = 0.100000) [00:30:31] [worker #0] ML tree search #13, logLikelihood: -52323.238916 [00:30:31 -124319.489178] Initial branch length optimization [00:30:31 -96118.964174] Model parameter optimization (eps = 10.000000) [00:30:42 -95852.880478] AUTODETECT spr round 1 (radius: 5) [00:30:52 -82308.840071] AUTODETECT spr round 2 (radius: 10) [00:31:07 -64531.777661] AUTODETECT spr round 3 (radius: 15) [00:31:16] [worker #1] ML tree search #14, logLikelihood: -52329.260068 [00:31:24 -59446.570573] AUTODETECT spr round 4 (radius: 20) [00:31:42 -57923.710313] AUTODETECT spr round 5 (radius: 25) [00:32:03 -57919.212184] SPR radius for FAST iterations: 25 (autodetect) [00:32:03 -57919.212184] Model parameter optimization (eps = 3.000000) [00:32:13 -57854.664324] FAST spr round 1 (radius: 25) [00:32:30 -52504.535037] FAST spr round 2 (radius: 25) [00:32:43 -52351.459883] FAST spr round 3 (radius: 25) [00:32:53 -52333.370637] FAST spr round 4 (radius: 25) [00:33:03 -52333.369867] Model parameter optimization (eps = 1.000000) [00:33:06 -52332.041486] SLOW spr round 1 (radius: 5) [00:33:25 -52325.841476] SLOW spr round 2 (radius: 5) [00:33:43 -52322.672862] SLOW spr round 3 (radius: 5) [00:34:01 -52321.145925] SLOW spr round 4 (radius: 5) [00:34:17 -52321.144318] SLOW spr round 5 (radius: 10) [00:34:35 -52321.144267] SLOW spr round 6 (radius: 15) [00:35:11 -52321.144266] SLOW spr round 7 (radius: 20) [00:35:48 -52321.144266] SLOW spr round 8 (radius: 25) [00:36:22 -52321.144266] Model parameter optimization (eps = 0.100000) [00:36:22] [worker #2] ML tree search #18, logLikelihood: -52320.138044 [00:36:23] [worker #0] ML tree search #16, logLikelihood: -52321.119199 [00:36:23 -124197.555525] Initial branch length optimization [00:36:24 -95986.619075] Model parameter optimization (eps = 10.000000) [00:36:33 -95748.799669] AUTODETECT spr round 1 (radius: 5) [00:36:43 -79350.502531] AUTODETECT spr round 2 (radius: 10) [00:36:57 -65657.201588] AUTODETECT spr round 3 (radius: 15) [00:37:15 -60399.513933] AUTODETECT spr round 4 (radius: 20) [00:37:22] [worker #1] ML tree search #17, logLikelihood: -52328.992266 [00:37:36 -57106.118659] AUTODETECT spr round 5 (radius: 25) [00:37:57 -56851.245132] SPR radius for FAST iterations: 25 (autodetect) [00:37:57 -56851.245132] Model parameter optimization (eps = 3.000000) [00:38:04 -56798.426889] FAST spr round 1 (radius: 25) [00:38:22 -52598.651082] FAST spr round 2 (radius: 25) [00:38:35 -52336.714033] FAST spr round 3 (radius: 25) [00:38:46 -52326.779579] FAST spr round 4 (radius: 25) [00:38:55 -52325.160578] FAST spr round 5 (radius: 25) [00:39:04 -52325.160464] Model parameter optimization (eps = 1.000000) [00:39:09 -52324.028237] SLOW spr round 1 (radius: 5) [00:39:28 -52320.434408] SLOW spr round 2 (radius: 5) [00:39:46 -52318.765509] SLOW spr round 3 (radius: 5) [00:40:03 -52318.764832] SLOW spr round 4 (radius: 10) [00:40:20 -52318.124740] SLOW spr round 5 (radius: 5) [00:40:44 -52318.124274] SLOW spr round 6 (radius: 10) [00:41:06 -52318.124268] SLOW spr round 7 (radius: 15) [00:41:36 -52318.124268] SLOW spr round 8 (radius: 20) [00:42:10 -52318.124268] SLOW spr round 9 (radius: 25) [00:42:42 -52318.124268] Model parameter optimization (eps = 0.100000) [00:42:45] [worker #0] ML tree search #19, logLikelihood: -52317.956187 [00:42:57] [worker #1] ML tree search #20, logLikelihood: -52319.520396 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.136335,0.241841) (0.192748,0.363300) (0.305610,0.738140) (0.365307,1.837961) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -52316.728177 AIC score: 105551.456353 / AICc score: 527831.456353 / BIC score: 107357.572789 Free parameters (model + branch lengths): 459 WARNING: Number of free parameters (K=459) is larger than alignment size (n=378). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/3_mltree/Q8WVF1.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/3_mltree/Q8WVF1.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/3_mltree/Q8WVF1.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q8WVF1/3_mltree/Q8WVF1.raxml.log Analysis started: 02-Jul-2021 01:48:04 / finished: 02-Jul-2021 02:31:01 Elapsed time: 2577.693 seconds Consumed energy: 154.319 Wh