RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 02-Jul-2021 07:30:25 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/2_msa/Q7Z5L9_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9 --seed 2 --threads 6 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (6 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/2_msa/Q7Z5L9_trimmed_msa.fasta [00:00:00] Loaded alignment with 378 taxa and 282 sites WARNING: Sequences tr_A0A1D5NX91_A0A1D5NX91_CHICK_9031 and tr_A0A226NDH3_A0A226NDH3_CALSU_9009 are exactly identical! WARNING: Sequences sp_Q8K3X4_I2BPL_MOUSE_10090 and sp_Q5EIC4_I2BPL_RAT_10116 are exactly identical! WARNING: Sequences sp_Q8K3X4_I2BPL_MOUSE_10090 and tr_A0A1U7QQR3_A0A1U7QQR3_MESAU_10036 are exactly identical! WARNING: Sequences tr_G3SFM4_G3SFM4_GORGO_9595 and tr_H2QGM3_H2QGM3_PANTR_9598 are exactly identical! WARNING: Sequences tr_G3SFM4_G3SFM4_GORGO_9595 and sp_Q8IU81_I2BP1_HUMAN_9606 are exactly identical! WARNING: Sequences tr_G1SKT5_G1SKT5_RABIT_9986 and tr_F6VPN9_F6VPN9_HORSE_9796 are exactly identical! WARNING: Sequences tr_K7ARR5_K7ARR5_PANTR_9598 and sp_Q7Z5L9_I2BP2_HUMAN_9606 are exactly identical! WARNING: Sequences tr_K7ARR5_K7ARR5_PANTR_9598 and tr_A0A096MPE5_A0A096MPE5_PAPAN_9555 are exactly identical! WARNING: Sequences tr_K7ARR5_K7ARR5_PANTR_9598 and tr_A0A0D9RCI7_A0A0D9RCI7_CHLSB_60711 are exactly identical! WARNING: Sequences tr_K7ARR5_K7ARR5_PANTR_9598 and tr_A0A2K5MAA6_A0A2K5MAA6_CERAT_9531 are exactly identical! WARNING: Sequences tr_K7ARR5_K7ARR5_PANTR_9598 and tr_A0A2K6BMG7_A0A2K6BMG7_MACNE_9545 are exactly identical! WARNING: Sequences tr_A0A158NCI2_A0A158NCI2_ATTCE_12957 and tr_A0A195BYD9_A0A195BYD9_9HYME_520822 are exactly identical! WARNING: Sequences tr_F6Y5F5_F6Y5F5_MACMU_9544 and tr_A0A0D9SDY4_A0A0D9SDY4_CHLSB_60711 are exactly identical! WARNING: Sequences tr_F7CH05_F7CH05_MACMU_9544 and tr_A0A0A0MX84_A0A0A0MX84_PAPAN_9555 are exactly identical! WARNING: Sequences tr_F7CH05_F7CH05_MACMU_9544 and tr_A0A0D9SE35_A0A0D9SE35_CHLSB_60711 are exactly identical! WARNING: Sequences tr_F7CH05_F7CH05_MACMU_9544 and tr_A0A2K5KZQ6_A0A2K5KZQ6_CERAT_9531 are exactly identical! WARNING: Sequences tr_F7CH05_F7CH05_MACMU_9544 and tr_A0A2K6AX43_A0A2K6AX43_MACNE_9545 are exactly identical! WARNING: Sequences tr_F1S2N4_F1S2N4_PIG_9823 and tr_A0A337SRV8_A0A337SRV8_FELCA_9685 are exactly identical! WARNING: Sequences tr_F1S2N4_F1S2N4_PIG_9823 and tr_A0A2U3VVJ9_A0A2U3VVJ9_ODORO_9708 are exactly identical! WARNING: Sequences tr_F1S2N4_F1S2N4_PIG_9823 and tr_A0A2U3Y696_A0A2U3Y696_LEPWE_9713 are exactly identical! WARNING: Sequences tr_F1S2N4_F1S2N4_PIG_9823 and tr_A0A2Y9JJM3_A0A2Y9JJM3_ENHLU_391180 are exactly identical! WARNING: Sequences tr_F1S2N4_F1S2N4_PIG_9823 and tr_A0A2Y9NGT8_A0A2Y9NGT8_DELLE_9749 are exactly identical! WARNING: Sequences tr_F1S2N4_F1S2N4_PIG_9823 and tr_A0A2Y9ERS5_A0A2Y9ERS5_PHYCD_9755 are exactly identical! WARNING: Sequences tr_F1S2N4_F1S2N4_PIG_9823 and tr_A0A384BH71_A0A384BH71_BALAS_310752 are exactly identical! WARNING: Sequences tr_D2HVD7_D2HVD7_AILME_9646 and tr_A0A384C0E9_A0A384C0E9_URSMA_29073 are exactly identical! WARNING: Sequences tr_A0A087YNF5_A0A087YNF5_POEFO_48698 and tr_A0A087YNF6_A0A087YNF6_POEFO_48698 are exactly identical! WARNING: Sequences tr_A0A0Q3USM5_A0A0Q3USM5_AMAAE_12930 and tr_A0A1V4JKK8_A0A1V4JKK8_PATFA_372326 are exactly identical! WARNING: Sequences tr_A0A151X0R4_A0A151X0R4_9HYME_64791 and tr_A0A151IQN6_A0A151IQN6_9HYME_456900 are exactly identical! WARNING: Duplicate sequences found: 28 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9.raxml.reduced.phy Alignment comprises 1 partitions and 282 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 282 / 282 Gaps: 17.31 % Invariant sites: 0.71 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9.raxml.rba Parallelization scheme autoconfig: 6 worker(s) x 1 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 378 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 282 / 22560 [00:00:00] Data distribution: max. searches per worker: 4 Starting ML tree search with 20 distinct starting trees [00:00:00 -115160.675145] Initial branch length optimization [00:00:02 -93669.566421] Model parameter optimization (eps = 10.000000) [00:00:30 -93492.748229] AUTODETECT spr round 1 (radius: 5) [00:01:08 -65486.127139] AUTODETECT spr round 2 (radius: 10) [00:01:56 -49446.433828] AUTODETECT spr round 3 (radius: 15) [00:02:54 -42441.310680] AUTODETECT spr round 4 (radius: 20) [00:04:06 -39527.129389] AUTODETECT spr round 5 (radius: 25) [00:05:26 -38115.964354] SPR radius for FAST iterations: 25 (autodetect) [00:05:26 -38115.964354] Model parameter optimization (eps = 3.000000) [00:05:47 -37869.970413] FAST spr round 1 (radius: 25) [00:06:42 -34477.380431] FAST spr round 2 (radius: 25) [00:07:26 -34006.903544] FAST spr round 3 (radius: 25) [00:08:02 -33974.272891] FAST spr round 4 (radius: 25) [00:08:33 -33968.429173] FAST spr round 5 (radius: 25) [00:09:01 -33966.473266] FAST spr round 6 (radius: 25) [00:09:29 -33966.472980] Model parameter optimization (eps = 1.000000) [00:09:38 -33962.270561] SLOW spr round 1 (radius: 5) [00:10:28 -33947.641372] SLOW spr round 2 (radius: 5) [00:11:19 -33942.941822] SLOW spr round 3 (radius: 5) [00:12:07 -33941.809550] SLOW spr round 4 (radius: 5) [00:12:53 -33941.695781] SLOW spr round 5 (radius: 5) [00:13:38 -33941.695656] SLOW spr round 6 (radius: 10) [00:14:28 -33941.441522] SLOW spr round 7 (radius: 5) [00:15:32 -33941.438424] SLOW spr round 8 (radius: 10) [00:16:34 -33941.437020] SLOW spr round 9 (radius: 15) [00:18:04 -33937.347570] SLOW spr round 10 (radius: 5) [00:19:13 -33936.763032] SLOW spr round 11 (radius: 5) [00:19:56] [worker #2] ML tree search #3, logLikelihood: -33942.139968 [00:20:11 -33936.762854] SLOW spr round 12 (radius: 10) [00:21:08 -33936.762761] SLOW spr round 13 (radius: 15) [00:21:48] [worker #1] ML tree search #2, logLikelihood: -33930.621759 [00:22:02] [worker #3] ML tree search #4, logLikelihood: -33940.846896 [00:22:39 -33936.762759] SLOW spr round 14 (radius: 20) [00:24:37 -33936.762758] SLOW spr round 15 (radius: 25) [00:24:44] [worker #5] ML tree search #6, logLikelihood: -33941.790270 [00:26:37 -33936.762758] Model parameter optimization (eps = 0.100000) [00:26:40] [worker #4] ML tree search #5, logLikelihood: -33938.774109 [00:26:44] [worker #0] ML tree search #1, logLikelihood: -33936.592870 [00:26:44 -114900.794646] Initial branch length optimization [00:26:46 -92894.890985] Model parameter optimization (eps = 10.000000) [00:27:13 -92681.087057] AUTODETECT spr round 1 (radius: 5) [00:27:51 -66344.944573] AUTODETECT spr round 2 (radius: 10) [00:28:38 -48611.757892] AUTODETECT spr round 3 (radius: 15) [00:29:35 -40720.897476] AUTODETECT spr round 4 (radius: 20) [00:30:32 -39448.351357] AUTODETECT spr round 5 (radius: 25) [00:31:37 -38824.999369] SPR radius for FAST iterations: 25 (autodetect) [00:31:37 -38824.999369] Model parameter optimization (eps = 3.000000) [00:32:00 -38594.278238] FAST spr round 1 (radius: 25) [00:32:50 -34057.515922] FAST spr round 2 (radius: 25) [00:33:34 -33960.827036] FAST spr round 3 (radius: 25) [00:34:07 -33947.732493] FAST spr round 4 (radius: 25) [00:34:35 -33947.731579] Model parameter optimization (eps = 1.000000) [00:34:44 -33946.058833] SLOW spr round 1 (radius: 5) [00:35:31 -33938.782444] SLOW spr round 2 (radius: 5) [00:36:17 -33936.982234] SLOW spr round 3 (radius: 5) [00:37:02 -33936.982207] SLOW spr round 4 (radius: 10) [00:37:50 -33936.667971] SLOW spr round 5 (radius: 5) [00:38:54 -33935.180149] SLOW spr round 6 (radius: 5) [00:39:46 -33935.179833] SLOW spr round 7 (radius: 10) [00:40:37 -33935.179767] SLOW spr round 8 (radius: 15) [00:40:50] [worker #2] ML tree search #9, logLikelihood: -33966.807856 [00:42:11 -33932.355464] SLOW spr round 9 (radius: 5) [00:43:17 -33932.203133] SLOW spr round 10 (radius: 5) [00:43:54] [worker #3] ML tree search #10, logLikelihood: -33940.029848 [00:44:05] [worker #4] ML tree search #11, logLikelihood: -33945.008775 [00:44:11 -33932.202902] SLOW spr round 11 (radius: 10) [00:45:05 -33932.202893] SLOW spr round 12 (radius: 15) [00:46:39 -33932.202881] SLOW spr round 13 (radius: 20) [00:47:35] [worker #1] ML tree search #8, logLikelihood: -33937.135458 [00:48:33 -33932.143854] SLOW spr round 14 (radius: 25) [00:50:35 -33932.143854] Model parameter optimization (eps = 0.100000) [00:50:43] [worker #0] ML tree search #7, logLikelihood: -33931.640723 [00:50:43 -114076.748371] Initial branch length optimization [00:50:45 -92666.623079] Model parameter optimization (eps = 10.000000) [00:51:14 -92481.913839] AUTODETECT spr round 1 (radius: 5) [00:51:49 -64511.006156] AUTODETECT spr round 2 (radius: 10) [00:52:29] [worker #5] ML tree search #12, logLikelihood: -33935.224612 [00:52:31 -48516.321920] AUTODETECT spr round 3 (radius: 15) [00:53:27 -43391.239479] AUTODETECT spr round 4 (radius: 20) [00:54:28 -41074.226343] AUTODETECT spr round 5 (radius: 25) [00:55:38 -41068.595022] SPR radius for FAST iterations: 25 (autodetect) [00:55:38 -41068.595022] Model parameter optimization (eps = 3.000000) [00:55:56 -40870.287291] FAST spr round 1 (radius: 25) [00:56:52 -34349.885696] FAST spr round 2 (radius: 25) [00:57:33 -34017.678557] FAST spr round 3 (radius: 25) [00:58:07 -33965.928567] FAST spr round 4 (radius: 25) [00:58:38 -33959.046167] FAST spr round 5 (radius: 25) [00:59:06 -33959.046064] Model parameter optimization (eps = 1.000000) [00:59:14 -33957.385772] SLOW spr round 1 (radius: 5) [01:00:01 -33940.352949] SLOW spr round 2 (radius: 5) [01:00:46] [worker #2] ML tree search #15, logLikelihood: -33934.263656 [01:00:48 -33936.641270] SLOW spr round 3 (radius: 5) [01:01:22] [worker #3] ML tree search #16, logLikelihood: -33935.665297 [01:01:33 -33936.641007] SLOW spr round 4 (radius: 10) [01:02:20 -33936.581514] SLOW spr round 5 (radius: 15) [01:03:43 -33936.262767] SLOW spr round 6 (radius: 5) [01:04:22] [worker #4] ML tree search #17, logLikelihood: -33934.091036 [01:04:46 -33936.258260] SLOW spr round 7 (radius: 10) [01:05:48 -33936.258139] SLOW spr round 8 (radius: 15) [01:07:11 -33936.258138] SLOW spr round 9 (radius: 20) [01:08:12] [worker #1] ML tree search #14, logLikelihood: -33934.183798 [01:09:04 -33936.258137] SLOW spr round 10 (radius: 25) [01:10:57] [worker #5] ML tree search #18, logLikelihood: -33942.394946 [01:11:12 -33936.258136] Model parameter optimization (eps = 0.100000) [01:11:15] [worker #0] ML tree search #13, logLikelihood: -33936.208057 [01:11:15 -114531.143065] Initial branch length optimization [01:11:17 -93351.870096] Model parameter optimization (eps = 10.000000) [01:11:46 -93149.504072] AUTODETECT spr round 1 (radius: 5) [01:12:24 -64980.631170] AUTODETECT spr round 2 (radius: 10) [01:13:09 -52333.724875] AUTODETECT spr round 3 (radius: 15) [01:14:08 -43100.226873] AUTODETECT spr round 4 (radius: 20) [01:15:28 -40146.418717] AUTODETECT spr round 5 (radius: 25) [01:17:00 -39495.926094] SPR radius for FAST iterations: 25 (autodetect) [01:17:00 -39495.926094] Model parameter optimization (eps = 3.000000) [01:17:20 -39274.086091] FAST spr round 1 (radius: 25) [01:18:19 -34415.997650] FAST spr round 2 (radius: 25) [01:19:04 -33962.499730] FAST spr round 3 (radius: 25) [01:19:40 -33951.190426] FAST spr round 4 (radius: 25) [01:20:10 -33951.190132] Model parameter optimization (eps = 1.000000) [01:20:21 -33945.959702] SLOW spr round 1 (radius: 5) [01:21:14 -33935.409929] SLOW spr round 2 (radius: 5) [01:22:05 -33935.405907] SLOW spr round 3 (radius: 10) [01:22:54 -33935.405878] SLOW spr round 4 (radius: 15) [01:24:28 -33933.029555] SLOW spr round 5 (radius: 5) [01:25:37 -33932.212068] SLOW spr round 6 (radius: 5) [01:26:34 -33932.211351] SLOW spr round 7 (radius: 10) [01:27:29 -33932.211340] SLOW spr round 8 (radius: 15) [01:28:56] [worker #1] ML tree search #20, logLikelihood: -33937.320264 [01:28:58 -33932.211250] SLOW spr round 9 (radius: 20) [01:30:57 -33932.211250] SLOW spr round 10 (radius: 25) [01:33:01 -33932.211249] Model parameter optimization (eps = 0.100000) [01:33:07] [worker #0] ML tree search #19, logLikelihood: -33932.008560 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.184402,0.378483) (0.181475,1.404192) (0.299026,0.634694) (0.335097,1.449108) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -33930.621759 AIC score: 69379.243518 / AICc score: 1223059.243518 / BIC score: 72143.450985 Free parameters (model + branch lengths): 759 WARNING: Number of free parameters (K=759) is larger than alignment size (n=282). This might lead to overfitting and compromise tree inference results! WARNING: Best ML tree contains 1 near-zero branches! Best ML tree with collapsed near-zero branches saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9.raxml.bestTreeCollapsed Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q7Z5L9/3_mltree/Q7Z5L9.raxml.log Analysis started: 02-Jul-2021 07:30:25 / finished: 02-Jul-2021 09:03:32 Elapsed time: 5587.166 seconds Consumed energy: 509.314 Wh (= 3 km in an electric car, or 13 km with an e-scooter!)