RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, 28 cores, 251 GB RAM RAxML-NG was called at 02-Jul-2021 15:13:26 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/2_msa/Q6PJG6_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/3_mltree/Q6PJG6 --seed 2 --threads 8 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (8 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/2_msa/Q6PJG6_trimmed_msa.fasta [00:00:00] Loaded alignment with 107 taxa and 816 sites Alignment comprises 1 partitions and 816 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 816 / 816 Gaps: 12.08 % Invariant sites: 0.86 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/3_mltree/Q6PJG6.raxml.rba Parallelization scheme autoconfig: 2 worker(s) x 4 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 107 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 204 / 16320 [00:00:00] Data distribution: max. searches per worker: 10 Starting ML tree search with 20 distinct starting trees [00:00:00 -124551.640735] Initial branch length optimization [00:00:00 -102129.857100] Model parameter optimization (eps = 10.000000) [00:00:08 -101980.692654] AUTODETECT spr round 1 (radius: 5) [00:00:12 -75642.011868] AUTODETECT spr round 2 (radius: 10) [00:00:18 -67058.947976] AUTODETECT spr round 3 (radius: 15) [00:00:25 -64752.477230] AUTODETECT spr round 4 (radius: 20) [00:00:31 -64752.448547] SPR radius for FAST iterations: 15 (autodetect) [00:00:31 -64752.448547] Model parameter optimization (eps = 3.000000) [00:00:39 -64528.768246] FAST spr round 1 (radius: 15) [00:00:46 -61649.570558] FAST spr round 2 (radius: 15) [00:00:51 -61590.578779] FAST spr round 3 (radius: 15) [00:00:56 -61587.428973] FAST spr round 4 (radius: 15) [00:01:01 -61584.410836] FAST spr round 5 (radius: 15) [00:01:06 -61580.302318] FAST spr round 6 (radius: 15) [00:01:11 -61579.860535] FAST spr round 7 (radius: 15) [00:01:16 -61579.249758] FAST spr round 8 (radius: 15) [00:01:21 -61578.907599] FAST spr round 9 (radius: 15) [00:01:26 -61578.870196] Model parameter optimization (eps = 1.000000) [00:01:29 -61575.533220] SLOW spr round 1 (radius: 5) [00:01:39 -61570.002224] SLOW spr round 2 (radius: 5) [00:01:49 -61569.337844] SLOW spr round 3 (radius: 5) [00:01:58 -61569.337779] SLOW spr round 4 (radius: 10) [00:02:08 -61565.448724] SLOW spr round 5 (radius: 5) [00:02:22 -61565.448534] SLOW spr round 6 (radius: 10) [00:02:33 -61565.448483] SLOW spr round 7 (radius: 15) [00:02:47 -61565.448462] SLOW spr round 8 (radius: 20) [00:03:00 -61565.448454] SLOW spr round 9 (radius: 25) [00:03:05] [worker #1] ML tree search #2, logLikelihood: -61565.865606 [00:03:09 -61565.448450] Model parameter optimization (eps = 0.100000) [00:03:11] [worker #0] ML tree search #1, logLikelihood: -61565.360801 [00:03:11 -128214.791368] Initial branch length optimization [00:03:11 -103450.373204] Model parameter optimization (eps = 10.000000) [00:03:17 -103355.440642] AUTODETECT spr round 1 (radius: 5) [00:03:21 -75880.217097] AUTODETECT spr round 2 (radius: 10) [00:03:28 -66941.537096] AUTODETECT spr round 3 (radius: 15) [00:03:34 -64724.175962] AUTODETECT spr round 4 (radius: 20) [00:03:40 -64714.346910] AUTODETECT spr round 5 (radius: 25) [00:03:46 -64714.323462] SPR radius for FAST iterations: 20 (autodetect) [00:03:46 -64714.323462] Model parameter optimization (eps = 3.000000) [00:03:55 -64430.860082] FAST spr round 1 (radius: 20) [00:04:02 -61653.364703] FAST spr round 2 (radius: 20) [00:04:08 -61590.211935] FAST spr round 3 (radius: 20) [00:04:13 -61587.693265] FAST spr round 4 (radius: 20) [00:04:18 -61587.320796] FAST spr round 5 (radius: 20) [00:04:23 -61587.282614] Model parameter optimization (eps = 1.000000) [00:04:27 -61582.126262] SLOW spr round 1 (radius: 5) [00:04:37 -61566.443599] SLOW spr round 2 (radius: 5) [00:04:47 -61566.027573] SLOW spr round 3 (radius: 5) [00:04:56 -61566.027525] SLOW spr round 4 (radius: 10) [00:05:05 -61566.027521] SLOW spr round 5 (radius: 15) [00:05:20 -61566.027519] SLOW spr round 6 (radius: 20) [00:05:33 -61566.027518] SLOW spr round 7 (radius: 25) [00:05:42 -61566.027517] Model parameter optimization (eps = 0.100000) [00:05:44] [worker #0] ML tree search #3, logLikelihood: -61565.865624 [00:05:44 -129875.404571] Initial branch length optimization [00:05:44 -102638.009581] Model parameter optimization (eps = 10.000000) [00:05:54 -102507.090334] AUTODETECT spr round 1 (radius: 5) [00:05:58 -74593.570448] AUTODETECT spr round 2 (radius: 10) [00:06:04 -65773.356814] AUTODETECT spr round 3 (radius: 15) [00:06:10 -65188.806414] AUTODETECT spr round 4 (radius: 20) [00:06:15] [worker #1] ML tree search #4, logLikelihood: -61565.360792 [00:06:16 -65188.746703] SPR radius for FAST iterations: 15 (autodetect) [00:06:16 -65188.746703] Model parameter optimization (eps = 3.000000) [00:06:22 -64974.400392] FAST spr round 1 (radius: 15) [00:06:31 -61686.022155] FAST spr round 2 (radius: 15) [00:06:36 -61594.519588] FAST spr round 3 (radius: 15) [00:06:42 -61591.222013] FAST spr round 4 (radius: 15) [00:06:47 -61590.424854] FAST spr round 5 (radius: 15) [00:06:51 -61589.805032] FAST spr round 6 (radius: 15) [00:06:56 -61589.505194] FAST spr round 7 (radius: 15) [00:07:01 -61589.388247] FAST spr round 8 (radius: 15) [00:07:06 -61589.359194] Model parameter optimization (eps = 1.000000) [00:07:10 -61581.284548] SLOW spr round 1 (radius: 5) [00:07:20 -61576.020466] SLOW spr round 2 (radius: 5) [00:07:30 -61576.012568] SLOW spr round 3 (radius: 10) [00:07:39 -61574.160119] SLOW spr round 4 (radius: 5) [00:07:54 -61574.159641] SLOW spr round 5 (radius: 10) [00:08:04 -61574.159510] SLOW spr round 6 (radius: 15) [00:08:18 -61574.159456] SLOW spr round 7 (radius: 20) [00:08:31 -61574.159432] SLOW spr round 8 (radius: 25) [00:08:40 -61574.159420] Model parameter optimization (eps = 0.100000) [00:08:41] [worker #0] ML tree search #5, logLikelihood: -61574.106668 [00:08:41 -127305.406927] Initial branch length optimization [00:08:41 -102689.864287] Model parameter optimization (eps = 10.000000) [00:08:52 -102533.553405] AUTODETECT spr round 1 (radius: 5) [00:08:53] [worker #1] ML tree search #6, logLikelihood: -61566.462384 [00:08:56 -75900.432523] AUTODETECT spr round 2 (radius: 10) [00:09:02 -65013.121771] AUTODETECT spr round 3 (radius: 15) [00:09:09 -64445.226997] AUTODETECT spr round 4 (radius: 20) [00:09:16 -64435.545819] AUTODETECT spr round 5 (radius: 25) [00:09:20 -64435.494940] SPR radius for FAST iterations: 20 (autodetect) [00:09:20 -64435.494940] Model parameter optimization (eps = 3.000000) [00:09:29 -64176.819983] FAST spr round 1 (radius: 20) [00:09:37 -61757.546416] FAST spr round 2 (radius: 20) [00:09:43 -61594.187661] FAST spr round 3 (radius: 20) [00:09:47 -61589.691762] FAST spr round 4 (radius: 20) [00:09:52 -61587.445977] FAST spr round 5 (radius: 20) [00:09:57 -61586.887515] FAST spr round 6 (radius: 20) [00:10:02 -61586.874400] Model parameter optimization (eps = 1.000000) [00:10:04 -61585.114986] SLOW spr round 1 (radius: 5) [00:10:15 -61566.391756] SLOW spr round 2 (radius: 5) [00:10:24 -61566.039987] SLOW spr round 3 (radius: 5) [00:10:34 -61566.039948] SLOW spr round 4 (radius: 10) [00:10:43 -61566.039945] SLOW spr round 5 (radius: 15) [00:10:58 -61566.039944] SLOW spr round 6 (radius: 20) [00:11:11 -61566.039944] SLOW spr round 7 (radius: 25) [00:11:20 -61566.039944] Model parameter optimization (eps = 0.100000) [00:11:22] [worker #0] ML tree search #7, logLikelihood: -61565.865642 [00:11:22 -129228.628886] Initial branch length optimization [00:11:22 -104061.067058] Model parameter optimization (eps = 10.000000) [00:11:30] [worker #1] ML tree search #8, logLikelihood: -61566.029309 [00:11:32 -103847.690039] AUTODETECT spr round 1 (radius: 5) [00:11:36 -79532.772746] AUTODETECT spr round 2 (radius: 10) [00:11:42 -67861.903476] AUTODETECT spr round 3 (radius: 15) [00:11:50 -65304.056209] AUTODETECT spr round 4 (radius: 20) [00:11:56 -65304.009566] SPR radius for FAST iterations: 15 (autodetect) [00:11:56 -65304.009566] Model parameter optimization (eps = 3.000000) [00:12:06 -65113.659450] FAST spr round 1 (radius: 15) [00:12:14 -61680.299001] FAST spr round 2 (radius: 15) [00:12:19 -61615.921777] FAST spr round 3 (radius: 15) [00:12:24 -61601.456543] FAST spr round 4 (radius: 15) [00:12:29 -61599.290548] FAST spr round 5 (radius: 15) [00:12:34 -61598.553367] FAST spr round 6 (radius: 15) [00:12:38 -61598.104588] FAST spr round 7 (radius: 15) [00:12:43 -61597.551348] FAST spr round 8 (radius: 15) [00:12:48 -61597.258307] FAST spr round 9 (radius: 15) [00:12:53 -61597.248839] Model parameter optimization (eps = 1.000000) [00:12:57 -61586.355723] SLOW spr round 1 (radius: 5) [00:13:07 -61570.682373] SLOW spr round 2 (radius: 5) [00:13:17 -61570.029380] SLOW spr round 3 (radius: 5) [00:13:27 -61570.029332] SLOW spr round 4 (radius: 10) [00:13:36 -61566.005935] SLOW spr round 5 (radius: 5) [00:13:51 -61566.005784] SLOW spr round 6 (radius: 10) [00:14:01 -61566.005753] SLOW spr round 7 (radius: 15) [00:14:15 -61566.005740] SLOW spr round 8 (radius: 20) [00:14:28 -61566.005734] SLOW spr round 9 (radius: 25) [00:14:37 -61566.005731] Model parameter optimization (eps = 0.100000) [00:14:39] [worker #0] ML tree search #9, logLikelihood: -61565.865616 [00:14:39 -125956.226486] Initial branch length optimization [00:14:39 -102676.429258] Model parameter optimization (eps = 10.000000) [00:14:43] [worker #1] ML tree search #10, logLikelihood: -61565.865777 [00:14:49 -102479.361134] AUTODETECT spr round 1 (radius: 5) [00:14:53 -76792.456166] AUTODETECT spr round 2 (radius: 10) [00:14:59 -70375.992858] AUTODETECT spr round 3 (radius: 15) [00:15:06 -67059.581389] AUTODETECT spr round 4 (radius: 20) [00:15:13 -64589.489035] AUTODETECT spr round 5 (radius: 25) [00:15:18 -64583.481830] SPR radius for FAST iterations: 25 (autodetect) [00:15:18 -64583.481830] Model parameter optimization (eps = 3.000000) [00:15:26 -64363.807359] FAST spr round 1 (radius: 25) [00:15:33 -61684.311675] FAST spr round 2 (radius: 25) [00:15:39 -61589.758109] FAST spr round 3 (radius: 25) [00:15:44 -61587.318018] FAST spr round 4 (radius: 25) [00:15:49 -61586.926500] FAST spr round 5 (radius: 25) [00:15:54 -61586.781218] FAST spr round 6 (radius: 25) [00:15:59 -61586.779493] Model parameter optimization (eps = 1.000000) [00:16:02 -61584.101331] SLOW spr round 1 (radius: 5) [00:16:13 -61565.493865] SLOW spr round 2 (radius: 5) [00:16:22 -61565.493764] SLOW spr round 3 (radius: 10) [00:16:32 -61565.493715] SLOW spr round 4 (radius: 15) [00:16:47 -61565.493691] SLOW spr round 5 (radius: 20) [00:17:00 -61565.493679] SLOW spr round 6 (radius: 25) [00:17:08 -61565.493673] Model parameter optimization (eps = 0.100000) [00:17:10] [worker #0] ML tree search #11, logLikelihood: -61565.360733 [00:17:10 -126410.220082] Initial branch length optimization [00:17:11 -102738.531478] Model parameter optimization (eps = 10.000000) [00:17:17 -102578.570465] AUTODETECT spr round 1 (radius: 5) [00:17:21 -71377.676286] AUTODETECT spr round 2 (radius: 10) [00:17:27 -64845.525069] AUTODETECT spr round 3 (radius: 15) [00:17:35 -64222.271753] AUTODETECT spr round 4 (radius: 20) [00:17:39] [worker #1] ML tree search #12, logLikelihood: -61565.361162 [00:17:41 -64221.511986] AUTODETECT spr round 5 (radius: 25) [00:17:45 -64221.477474] SPR radius for FAST iterations: 20 (autodetect) [00:17:45 -64221.477474] Model parameter optimization (eps = 3.000000) [00:17:54 -63987.337712] FAST spr round 1 (radius: 20) [00:18:01 -61671.177312] FAST spr round 2 (radius: 20) [00:18:07 -61601.174185] FAST spr round 3 (radius: 20) [00:18:13 -61590.525714] FAST spr round 4 (radius: 20) [00:18:18 -61587.896198] FAST spr round 5 (radius: 20) [00:18:23 -61587.612550] FAST spr round 6 (radius: 20) [00:18:28 -61587.523963] Model parameter optimization (eps = 1.000000) [00:18:32 -61584.433206] SLOW spr round 1 (radius: 5) [00:18:42 -61567.112591] SLOW spr round 2 (radius: 5) [00:18:52 -61567.092131] SLOW spr round 3 (radius: 10) [00:19:01 -61566.025991] SLOW spr round 4 (radius: 5) [00:19:16 -61565.928090] SLOW spr round 5 (radius: 10) [00:19:26 -61565.917030] SLOW spr round 6 (radius: 15) [00:19:41 -61565.911417] SLOW spr round 7 (radius: 20) [00:19:54 -61565.908580] SLOW spr round 8 (radius: 25) [00:20:02 -61565.907150] Model parameter optimization (eps = 0.100000) [00:20:04] [worker #0] ML tree search #13, logLikelihood: -61565.866477 [00:20:04 -129677.620912] Initial branch length optimization [00:20:04 -104267.479343] Model parameter optimization (eps = 10.000000) [00:20:14 -104049.595727] AUTODETECT spr round 1 (radius: 5) [00:20:18 -78882.754075] AUTODETECT spr round 2 (radius: 10) [00:20:24 -68137.375863] AUTODETECT spr round 3 (radius: 15) [00:20:31 -67293.521150] AUTODETECT spr round 4 (radius: 20) [00:20:37 -67145.882668] AUTODETECT spr round 5 (radius: 25) [00:20:40 -67145.854116] SPR radius for FAST iterations: 20 (autodetect) [00:20:40 -67145.854116] Model parameter optimization (eps = 3.000000) [00:20:47 -67017.480520] FAST spr round 1 (radius: 20) [00:20:48] [worker #1] ML tree search #14, logLikelihood: -61565.360841 [00:20:55 -61714.931188] FAST spr round 2 (radius: 20) [00:21:01 -61611.794892] FAST spr round 3 (radius: 20) [00:21:06 -61604.609501] FAST spr round 4 (radius: 20) [00:21:11 -61603.004423] FAST spr round 5 (radius: 20) [00:21:16 -61600.756970] FAST spr round 6 (radius: 20) [00:21:21 -61600.296575] FAST spr round 7 (radius: 20) [00:21:26 -61600.178197] FAST spr round 8 (radius: 20) [00:21:30 -61599.217273] FAST spr round 9 (radius: 20) [00:21:35 -61599.216214] Model parameter optimization (eps = 1.000000) [00:21:39 -61575.403519] SLOW spr round 1 (radius: 5) [00:21:49 -61569.336502] SLOW spr round 2 (radius: 5) [00:21:59 -61569.336483] SLOW spr round 3 (radius: 10) [00:22:09 -61565.461417] SLOW spr round 4 (radius: 5) [00:22:23 -61565.461280] SLOW spr round 5 (radius: 10) [00:22:34 -61565.461255] SLOW spr round 6 (radius: 15) [00:22:48 -61565.461247] SLOW spr round 7 (radius: 20) [00:23:01 -61565.461245] SLOW spr round 8 (radius: 25) [00:23:10 -61565.461244] Model parameter optimization (eps = 0.100000) [00:23:12] [worker #0] ML tree search #15, logLikelihood: -61565.360700 [00:23:12 -126659.228432] Initial branch length optimization [00:23:12 -101956.011886] Model parameter optimization (eps = 10.000000) [00:23:22 -101812.706664] AUTODETECT spr round 1 (radius: 5) [00:23:26 -74137.296767] AUTODETECT spr round 2 (radius: 10) [00:23:31 -65176.170717] AUTODETECT spr round 3 (radius: 15) [00:23:39 -64485.940543] AUTODETECT spr round 4 (radius: 20) [00:23:45 -64480.693535] AUTODETECT spr round 5 (radius: 25) [00:23:50 -64051.196608] SPR radius for FAST iterations: 25 (autodetect) [00:23:50 -64051.196608] Model parameter optimization (eps = 3.000000) [00:23:57 -63791.573629] FAST spr round 1 (radius: 25) [00:23:59] [worker #1] ML tree search #16, logLikelihood: -61565.865717 [00:24:05 -61622.540892] FAST spr round 2 (radius: 25) [00:24:11 -61576.746011] FAST spr round 3 (radius: 25) [00:24:16 -61576.119889] FAST spr round 4 (radius: 25) [00:24:21 -61575.580387] FAST spr round 5 (radius: 25) [00:24:26 -61575.221160] FAST spr round 6 (radius: 25) [00:24:31 -61575.107143] FAST spr round 7 (radius: 25) [00:24:36 -61575.047058] Model parameter optimization (eps = 1.000000) [00:24:39 -61573.152022] SLOW spr round 1 (radius: 5) [00:24:49 -61567.559457] SLOW spr round 2 (radius: 5) [00:24:59 -61567.144327] SLOW spr round 3 (radius: 5) [00:25:08 -61567.144157] SLOW spr round 4 (radius: 10) [00:25:18 -61566.110798] SLOW spr round 5 (radius: 5) [00:25:32 -61566.013351] SLOW spr round 6 (radius: 10) [00:25:42 -61566.002457] SLOW spr round 7 (radius: 15) [00:25:57 -61565.996958] SLOW spr round 8 (radius: 20) [00:26:10 -61565.994192] SLOW spr round 9 (radius: 25) [00:26:18 -61565.992804] Model parameter optimization (eps = 0.100000) [00:26:20] [worker #0] ML tree search #17, logLikelihood: -61565.866252 [00:26:20 -126450.433300] Initial branch length optimization [00:26:20 -102134.173591] Model parameter optimization (eps = 10.000000) [00:26:29 -101982.485651] AUTODETECT spr round 1 (radius: 5) [00:26:31] [worker #1] ML tree search #18, logLikelihood: -61565.865675 [00:26:33 -75661.378571] AUTODETECT spr round 2 (radius: 10) [00:26:40 -65190.169331] AUTODETECT spr round 3 (radius: 15) [00:26:46 -65056.820993] AUTODETECT spr round 4 (radius: 20) [00:26:52 -65056.770624] SPR radius for FAST iterations: 15 (autodetect) [00:26:52 -65056.770624] Model parameter optimization (eps = 3.000000) [00:26:58 -64876.887660] FAST spr round 1 (radius: 15) [00:27:06 -61716.844422] FAST spr round 2 (radius: 15) [00:27:12 -61586.037441] FAST spr round 3 (radius: 15) [00:27:17 -61579.253260] FAST spr round 4 (radius: 15) [00:27:22 -61578.746834] FAST spr round 5 (radius: 15) [00:27:27 -61578.414927] FAST spr round 6 (radius: 15) [00:27:32 -61578.292885] FAST spr round 7 (radius: 15) [00:27:37 -61578.239067] Model parameter optimization (eps = 1.000000) [00:27:41 -61572.482628] SLOW spr round 1 (radius: 5) [00:27:51 -61569.368494] SLOW spr round 2 (radius: 5) [00:28:00 -61569.355773] SLOW spr round 3 (radius: 10) [00:28:10 -61565.444548] SLOW spr round 4 (radius: 5) [00:28:24 -61565.444119] SLOW spr round 5 (radius: 10) [00:28:35 -61565.444048] SLOW spr round 6 (radius: 15) [00:28:49 -61565.444035] SLOW spr round 7 (radius: 20) [00:29:02 -61565.444032] SLOW spr round 8 (radius: 25) [00:29:11 -61565.444032] Model parameter optimization (eps = 0.100000) [00:29:12] [worker #0] ML tree search #19, logLikelihood: -61565.360798 [00:29:50] [worker #1] ML tree search #20, logLikelihood: -61565.865691 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.235901,0.583558) (0.155871,0.721493) (0.333624,0.856736) (0.274605,1.689887) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -61565.360700 AIC score: 123564.721400 / AICc score: 123722.935446 / BIC score: 124585.579315 Free parameters (model + branch lengths): 217 WARNING: Best ML tree contains 1 near-zero branches! Best ML tree with collapsed near-zero branches saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/3_mltree/Q6PJG6.raxml.bestTreeCollapsed Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/3_mltree/Q6PJG6.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/3_mltree/Q6PJG6.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/3_mltree/Q6PJG6.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q6PJG6/3_mltree/Q6PJG6.raxml.log Analysis started: 02-Jul-2021 15:13:26 / finished: 02-Jul-2021 15:43:17 Elapsed time: 1790.647 seconds Consumed energy: 114.596 Wh