RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 01-Jul-2021 13:43:29 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/2_msa/Q5TD94_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/3_mltree/Q5TD94 --seed 2 --threads 6 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (6 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/2_msa/Q5TD94_trimmed_msa.fasta [00:00:00] Loaded alignment with 276 taxa and 522 sites WARNING: Sequences tr_F7GSB0_F7GSB0_MACMU_9544 and tr_G7P3L3_G7P3L3_MACFA_9541 are exactly identical! WARNING: Sequences tr_F7GSB0_F7GSB0_MACMU_9544 and tr_A0A2K6D1I4_A0A2K6D1I4_MACNE_9545 are exactly identical! WARNING: Sequences tr_B3SAG7_B3SAG7_TRIAD_10228 and tr_A0A369S6S7_A0A369S6S7_9METZ_287889 are exactly identical! WARNING: Sequences tr_A0A0A0MX28_A0A0A0MX28_PAPAN_9555 and tr_A0A2K5LN59_A0A2K5LN59_CERAT_9531 are exactly identical! WARNING: Sequences tr_A0A0W8BXR1_A0A0W8BXR1_PHYNI_4790 and tr_W2KSV1_W2KSV1_PHYPR_4792 are exactly identical! WARNING: Duplicate sequences found: 5 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/3_mltree/Q5TD94.raxml.reduced.phy Alignment comprises 1 partitions and 522 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 522 / 522 Gaps: 12.71 % Invariant sites: 0.38 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/3_mltree/Q5TD94.raxml.rba Parallelization scheme autoconfig: 3 worker(s) x 2 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 276 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 261 / 20880 [00:00:00] Data distribution: max. searches per worker: 7 Starting ML tree search with 20 distinct starting trees [00:00:00 -208509.204467] Initial branch length optimization [00:00:01 -170238.785165] Model parameter optimization (eps = 10.000000) [00:00:15 -169694.916014] AUTODETECT spr round 1 (radius: 5) [00:00:36 -137130.542723] AUTODETECT spr round 2 (radius: 10) [00:01:05 -110535.249509] AUTODETECT spr round 3 (radius: 15) [00:01:38 -104048.557351] AUTODETECT spr round 4 (radius: 20) [00:02:19 -101952.542922] AUTODETECT spr round 5 (radius: 25) [00:03:06 -101952.534474] SPR radius for FAST iterations: 20 (autodetect) [00:03:06 -101952.534474] Model parameter optimization (eps = 3.000000) [00:03:16 -101592.911984] FAST spr round 1 (radius: 20) [00:03:51 -93684.215406] FAST spr round 2 (radius: 20) [00:04:21 -93417.787418] FAST spr round 3 (radius: 20) [00:04:45 -93401.388926] FAST spr round 4 (radius: 20) [00:05:07 -93387.717644] FAST spr round 5 (radius: 20) [00:05:25 -93383.632748] FAST spr round 6 (radius: 20) [00:05:43 -93383.629210] Model parameter optimization (eps = 1.000000) [00:05:51 -93369.590179] SLOW spr round 1 (radius: 5) [00:06:29 -93362.441605] SLOW spr round 2 (radius: 5) [00:07:05 -93358.589697] SLOW spr round 3 (radius: 5) [00:07:37 -93358.587371] SLOW spr round 4 (radius: 10) [00:08:13 -93358.587233] SLOW spr round 5 (radius: 15) [00:09:16 -93358.587218] SLOW spr round 6 (radius: 20) [00:10:45 -93358.587216] SLOW spr round 7 (radius: 25) [00:12:03 -93358.587215] Model parameter optimization (eps = 0.100000) [00:12:06] [worker #0] ML tree search #1, logLikelihood: -93358.501344 [00:12:06 -211038.488879] Initial branch length optimization [00:12:07 -172201.730324] Model parameter optimization (eps = 10.000000) [00:12:22 -171632.869140] AUTODETECT spr round 1 (radius: 5) [00:12:42 -139374.531048] AUTODETECT spr round 2 (radius: 10) [00:13:00] [worker #2] ML tree search #3, logLikelihood: -93365.784091 [00:13:12 -116425.985135] AUTODETECT spr round 3 (radius: 15) [00:13:34] [worker #1] ML tree search #2, logLikelihood: -93366.198800 [00:13:46 -103518.268890] AUTODETECT spr round 4 (radius: 20) [00:14:33 -101695.606555] AUTODETECT spr round 5 (radius: 25) [00:15:24 -101695.535059] SPR radius for FAST iterations: 20 (autodetect) [00:15:24 -101695.535059] Model parameter optimization (eps = 3.000000) [00:15:35 -101301.487377] FAST spr round 1 (radius: 20) [00:16:09 -93582.140645] FAST spr round 2 (radius: 20) [00:16:37 -93395.821674] FAST spr round 3 (radius: 20) [00:16:59 -93388.847679] FAST spr round 4 (radius: 20) [00:17:16 -93388.847673] Model parameter optimization (eps = 1.000000) [00:17:23 -93382.485274] SLOW spr round 1 (radius: 5) [00:18:03 -93370.227274] SLOW spr round 2 (radius: 5) [00:18:37 -93369.302502] SLOW spr round 3 (radius: 5) [00:19:10 -93369.278869] SLOW spr round 4 (radius: 10) [00:19:47 -93366.104724] SLOW spr round 5 (radius: 5) [00:20:31 -93366.023636] SLOW spr round 6 (radius: 10) [00:21:13 -93363.480545] SLOW spr round 7 (radius: 5) [00:21:56 -93363.477839] SLOW spr round 8 (radius: 10) [00:22:37 -93363.477598] SLOW spr round 9 (radius: 15) [00:23:33 -93363.477574] SLOW spr round 10 (radius: 20) [00:24:56 -93363.477571] SLOW spr round 11 (radius: 25) [00:26:15 -93363.477571] Model parameter optimization (eps = 0.100000) [00:26:21] [worker #0] ML tree search #4, logLikelihood: -93363.135245 [00:26:21 -208787.667156] Initial branch length optimization [00:26:21 -169913.269321] Model parameter optimization (eps = 10.000000) [00:26:36 -169362.291541] AUTODETECT spr round 1 (radius: 5) [00:26:56 -137855.688762] AUTODETECT spr round 2 (radius: 10) [00:27:24 -111607.436786] AUTODETECT spr round 3 (radius: 15) [00:27:45] [worker #1] ML tree search #5, logLikelihood: -93365.218428 [00:28:00 -103372.260718] AUTODETECT spr round 4 (radius: 20) [00:28:45 -102197.446350] AUTODETECT spr round 5 (radius: 25) [00:29:27 -100304.172707] SPR radius for FAST iterations: 25 (autodetect) [00:29:27 -100304.172707] Model parameter optimization (eps = 3.000000) [00:29:40 -99877.201485] FAST spr round 1 (radius: 25) [00:30:16 -93706.063779] FAST spr round 2 (radius: 25) [00:30:47 -93408.770662] FAST spr round 3 (radius: 25) [00:31:06 -93396.993788] FAST spr round 4 (radius: 25) [00:31:24 -93396.993757] Model parameter optimization (eps = 1.000000) [00:31:31 -93393.057619] SLOW spr round 1 (radius: 5) [00:32:09 -93379.584220] SLOW spr round 2 (radius: 5) [00:32:44 -93376.384812] SLOW spr round 3 (radius: 5) [00:33:18 -93376.384692] SLOW spr round 4 (radius: 10) [00:33:54 -93374.344271] SLOW spr round 5 (radius: 5) [00:34:38 -93374.343937] SLOW spr round 6 (radius: 10) [00:35:20 -93374.343929] SLOW spr round 7 (radius: 15) [00:35:25] [worker #2] ML tree search #6, logLikelihood: -93361.960415 [00:36:16 -93374.343929] SLOW spr round 8 (radius: 20) [00:37:33 -93374.343929] SLOW spr round 9 (radius: 25) [00:38:48 -93374.343929] Model parameter optimization (eps = 0.100000) [00:38:50] [worker #0] ML tree search #7, logLikelihood: -93374.309251 [00:38:50 -212315.694838] Initial branch length optimization [00:38:51 -171736.028855] Model parameter optimization (eps = 10.000000) [00:39:08 -171164.920768] AUTODETECT spr round 1 (radius: 5) [00:39:29 -136272.570232] AUTODETECT spr round 2 (radius: 10) [00:39:58 -110071.077819] AUTODETECT spr round 3 (radius: 15) [00:40:37 -102125.122296] AUTODETECT spr round 4 (radius: 20) [00:41:15] [worker #1] ML tree search #8, logLikelihood: -93372.069527 [00:41:26 -101350.746594] AUTODETECT spr round 5 (radius: 25) [00:42:16 -101307.231942] SPR radius for FAST iterations: 25 (autodetect) [00:42:16 -101307.231942] Model parameter optimization (eps = 3.000000) [00:42:27 -100884.120478] FAST spr round 1 (radius: 25) [00:43:02 -93925.105880] FAST spr round 2 (radius: 25) [00:43:31 -93511.624168] FAST spr round 3 (radius: 25) [00:43:57 -93402.373612] FAST spr round 4 (radius: 25) [00:44:17 -93398.515505] FAST spr round 5 (radius: 25) [00:44:36 -93394.280189] FAST spr round 6 (radius: 25) [00:44:54 -93394.280073] Model parameter optimization (eps = 1.000000) [00:45:01 -93382.725565] SLOW spr round 1 (radius: 5) [00:45:40 -93364.302000] SLOW spr round 2 (radius: 5) [00:46:14 -93364.299488] SLOW spr round 3 (radius: 10) [00:46:51 -93364.298558] SLOW spr round 4 (radius: 15) [00:48:02 -93361.288359] SLOW spr round 5 (radius: 5) [00:48:51 -93361.286312] SLOW spr round 6 (radius: 10) [00:49:37 -93361.286083] SLOW spr round 7 (radius: 15) [00:50:42 -93361.286047] SLOW spr round 8 (radius: 20) [00:52:15 -93361.286038] SLOW spr round 9 (radius: 25) [00:53:23] [worker #2] ML tree search #9, logLikelihood: -93358.111759 [00:53:31 -93361.286034] Model parameter optimization (eps = 0.100000) [00:53:34] [worker #0] ML tree search #10, logLikelihood: -93361.225183 [00:53:34 -211107.182648] Initial branch length optimization [00:53:35 -170340.402878] Model parameter optimization (eps = 10.000000) [00:53:48 -169803.173944] AUTODETECT spr round 1 (radius: 5) [00:54:09 -133407.651354] AUTODETECT spr round 2 (radius: 10) [00:54:39 -110691.836332] AUTODETECT spr round 3 (radius: 15) [00:55:14 -101718.471101] AUTODETECT spr round 4 (radius: 20) [00:56:02 -100365.823452] AUTODETECT spr round 5 (radius: 25) [00:56:49 -100343.502611] SPR radius for FAST iterations: 25 (autodetect) [00:56:49 -100343.502611] Model parameter optimization (eps = 3.000000) [00:57:03 -99897.991678] FAST spr round 1 (radius: 25) [00:57:39 -93577.433516] FAST spr round 2 (radius: 25) [00:57:49] [worker #1] ML tree search #11, logLikelihood: -93361.388916 [00:58:09 -93421.813808] FAST spr round 3 (radius: 25) [00:58:33 -93398.429515] FAST spr round 4 (radius: 25) [00:58:53 -93384.907332] FAST spr round 5 (radius: 25) [00:59:11 -93384.907303] Model parameter optimization (eps = 1.000000) [00:59:17 -93379.075364] SLOW spr round 1 (radius: 5) [00:59:56 -93368.368674] SLOW spr round 2 (radius: 5) [01:00:32 -93364.393789] SLOW spr round 3 (radius: 5) [01:01:06 -93364.267757] SLOW spr round 4 (radius: 5) [01:01:39 -93364.265896] SLOW spr round 5 (radius: 10) [01:02:15 -93362.528996] SLOW spr round 6 (radius: 5) [01:03:00 -93362.528311] SLOW spr round 7 (radius: 10) [01:03:43 -93362.528121] SLOW spr round 8 (radius: 15) [01:04:40 -93361.217772] SLOW spr round 9 (radius: 5) [01:05:28 -93360.860764] SLOW spr round 10 (radius: 5) [01:06:08 -93359.786452] SLOW spr round 11 (radius: 5) [01:06:43 -93359.786219] SLOW spr round 12 (radius: 10) [01:07:20 -93359.786212] SLOW spr round 13 (radius: 15) [01:08:19 -93359.786212] SLOW spr round 14 (radius: 20) [01:09:41 -93359.786212] SLOW spr round 15 (radius: 25) [01:10:10] [worker #2] ML tree search #12, logLikelihood: -93360.659487 [01:10:57 -93359.786212] Model parameter optimization (eps = 0.100000) [01:11:00] [worker #0] ML tree search #13, logLikelihood: -93359.688874 [01:11:00 -210441.212418] Initial branch length optimization [01:11:01 -170833.446531] Model parameter optimization (eps = 10.000000) [01:11:17 -170220.079716] AUTODETECT spr round 1 (radius: 5) [01:11:37 -136054.846696] AUTODETECT spr round 2 (radius: 10) [01:12:06 -112929.206727] AUTODETECT spr round 3 (radius: 15) [01:12:46 -102793.696569] AUTODETECT spr round 4 (radius: 20) [01:13:25] [worker #1] ML tree search #14, logLikelihood: -93368.371751 [01:13:37 -101453.488695] AUTODETECT spr round 5 (radius: 25) [01:14:30 -101452.391671] SPR radius for FAST iterations: 25 (autodetect) [01:14:30 -101452.391671] Model parameter optimization (eps = 3.000000) [01:14:42 -101020.387162] FAST spr round 1 (radius: 25) [01:15:19 -93728.321144] FAST spr round 2 (radius: 25) [01:15:47 -93515.704737] FAST spr round 3 (radius: 25) [01:16:12 -93408.923562] FAST spr round 4 (radius: 25) [01:16:31 -93404.472347] FAST spr round 5 (radius: 25) [01:16:50 -93404.439013] Model parameter optimization (eps = 1.000000) [01:16:57 -93400.009144] SLOW spr round 1 (radius: 5) [01:17:35 -93385.299892] SLOW spr round 2 (radius: 5) [01:18:11 -93381.421930] SLOW spr round 3 (radius: 5) [01:18:48 -93373.704022] SLOW spr round 4 (radius: 5) [01:19:23 -93373.704003] SLOW spr round 5 (radius: 10) [01:20:02 -93371.653912] SLOW spr round 6 (radius: 5) [01:20:49 -93369.649294] SLOW spr round 7 (radius: 5) [01:21:27 -93369.648348] SLOW spr round 8 (radius: 10) [01:22:07 -93368.023874] SLOW spr round 9 (radius: 5) [01:22:52 -93368.019544] SLOW spr round 10 (radius: 10) [01:23:37 -93368.019146] SLOW spr round 11 (radius: 15) [01:24:46 -93368.019109] SLOW spr round 12 (radius: 20) [01:26:28 -93368.019105] SLOW spr round 13 (radius: 25) [01:26:33] [worker #1] ML tree search #17, logLikelihood: -93371.239235 [01:27:36 -93368.019105] Model parameter optimization (eps = 0.100000) [01:27:41] [worker #0] ML tree search #16, logLikelihood: -93367.179783 [01:27:41 -210952.387139] Initial branch length optimization [01:27:42 -171366.241972] Model parameter optimization (eps = 10.000000) [01:27:57 -170802.047104] AUTODETECT spr round 1 (radius: 5) [01:28:17 -136821.992135] AUTODETECT spr round 2 (radius: 10) [01:28:41] [worker #2] ML tree search #15, logLikelihood: -93361.677861 [01:28:47 -112908.554048] AUTODETECT spr round 3 (radius: 15) [01:29:25 -108918.328201] AUTODETECT spr round 4 (radius: 20) [01:30:08 -103716.241296] AUTODETECT spr round 5 (radius: 25) [01:30:50 -103702.071580] SPR radius for FAST iterations: 25 (autodetect) [01:30:50 -103702.071580] Model parameter optimization (eps = 3.000000) [01:31:01 -103252.781405] FAST spr round 1 (radius: 25) [01:31:32 -93728.088928] FAST spr round 2 (radius: 25) [01:32:00 -93416.276399] FAST spr round 3 (radius: 25) [01:32:21 -93397.797285] FAST spr round 4 (radius: 25) [01:32:40 -93397.696480] FAST spr round 5 (radius: 25) [01:32:58 -93397.696364] Model parameter optimization (eps = 1.000000) [01:33:06 -93388.395009] SLOW spr round 1 (radius: 5) [01:33:43 -93375.999155] SLOW spr round 2 (radius: 5) [01:34:19 -93369.623815] SLOW spr round 3 (radius: 5) [01:34:52 -93368.639043] SLOW spr round 4 (radius: 5) [01:35:25 -93368.638976] SLOW spr round 5 (radius: 10) [01:36:02 -93364.032817] SLOW spr round 6 (radius: 5) [01:36:47 -93364.030358] SLOW spr round 7 (radius: 10) [01:37:30 -93363.354688] SLOW spr round 8 (radius: 5) [01:38:13 -93363.353920] SLOW spr round 9 (radius: 10) [01:38:55 -93363.353896] SLOW spr round 10 (radius: 15) [01:39:09] [worker #1] ML tree search #20, logLikelihood: -93364.183515 [01:39:51 -93363.353896] SLOW spr round 11 (radius: 20) [01:41:08 -93363.353896] SLOW spr round 12 (radius: 25) [01:42:23 -93363.353896] Model parameter optimization (eps = 0.100000) [01:42:27] [worker #0] ML tree search #19, logLikelihood: -93363.198263 [01:47:52] [worker #2] ML tree search #18, logLikelihood: -93367.741169 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.171485,0.400628) (0.162150,0.549394) (0.319241,0.833361) (0.347124,1.659841) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -93358.111759 AIC score: 187826.223519 / AICc score: 804986.223519 / BIC score: 190189.229030 Free parameters (model + branch lengths): 555 WARNING: Number of free parameters (K=555) is larger than alignment size (n=522). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/3_mltree/Q5TD94.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/3_mltree/Q5TD94.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/3_mltree/Q5TD94.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/Q5TD94/3_mltree/Q5TD94.raxml.log Analysis started: 01-Jul-2021 13:43:29 / finished: 01-Jul-2021 15:31:21 Elapsed time: 6472.300 seconds Consumed energy: 601.086 Wh (= 3 km in an electric car, or 15 km with an e-scooter!)