RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz, 36 cores, 251 GB RAM RAxML-NG was called at 24-Jun-2021 13:10:18 as follows: raxml-ng --msa /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/2_msa/Q4G176_trimmed_msa.fasta --data-type AA --model LG4X --prefix /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/3_mltree/Q4G176 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/2_msa/Q4G176_trimmed_msa.fasta [00:00:00] Loaded alignment with 1001 taxa and 594 sites WARNING: Sequences tr_A0A0E1RV83_A0A0E1RV83_COCIM_246410 and tr_A0A0J6YFM7_A0A0J6YFM7_COCIT_404692 are exactly identical! WARNING: Sequences tr_B6Q8W5_B6Q8W5_TALMQ_441960 and tr_A0A093VLJ2_A0A093VLJ2_TALMA_1077442 are exactly identical! WARNING: Sequences tr_A0A179UZY9_A0A179UZY9_BLAGS_559298 and tr_C5GRW9_C5GRW9_AJEDR_559297 are exactly identical! WARNING: Sequences tr_A0A0E0H7X1_A0A0E0H7X1_ORYNI_4536 and tr_A2XZ41_A2XZ41_ORYSI_39946 are exactly identical! WARNING: Sequences tr_A0A0E0H7X1_A0A0E0H7X1_ORYNI_4536 and tr_A0A0E0PFY4_A0A0E0PFY4_ORYRU_4529 are exactly identical! WARNING: Sequences tr_A0A0E0H7X1_A0A0E0H7X1_ORYNI_4536 and tr_Q7XPV4_Q7XPV4_ORYSJ_39947 are exactly identical! WARNING: Sequences tr_A2QYG7_A2QYG7_ASPNC_425011 and tr_G3XUT3_G3XUT3_ASPNA_380704 are exactly identical! WARNING: Sequences tr_A2QYG7_A2QYG7_ASPNC_425011 and tr_A0A319A2L6_A0A319A2L6_9EURO_1450533 are exactly identical! WARNING: Sequences tr_G7XW81_G7XW81_ASPKW_1033177 and tr_A0A146EY11_A0A146EY11_9EURO_1069201 are exactly identical! WARNING: Sequences tr_A0A0E0N2S4_A0A0E0N2S4_ORYRU_4529 and tr_A0A0D3EUA5_A0A0D3EUA5_9ORYZ_65489 are exactly identical! WARNING: Sequences tr_F2SS46_F2SS46_TRIRC_559305 and tr_A0A178EUX6_A0A178EUX6_TRIRU_5551 are exactly identical! WARNING: Sequences tr_W2Q9I1_W2Q9I1_PHYPN_761204 and tr_A0A0W8CK96_A0A0W8CK96_PHYNI_4790 are exactly identical! WARNING: Sequences tr_X0DQA1_X0DQA1_FUSOX_1089458 and tr_A0A2H3SR78_A0A2H3SR78_FUSOX_5507 are exactly identical! WARNING: Sequences tr_A0A0F8VB35_A0A0F8VB35_9EURO_308745 and tr_A0A2T5M0R6_A0A2T5M0R6_9EURO_1392256 are exactly identical! WARNING: Duplicate sequences found: 14 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/3_mltree/Q4G176.raxml.reduced.phy Alignment comprises 1 partitions and 594 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 594 / 594 Gaps: 14.37 % Invariant sites: 0.17 % NOTE: Binary MSA file already exists: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/3_mltree/Q4G176.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 1001 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 85 / 6800 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -960550.728821] Initial branch length optimization [00:00:04 -814884.326983] Model parameter optimization (eps = 10.000000) [00:00:46 -813677.236505] AUTODETECT spr round 1 (radius: 5) [00:02:58 -608623.623827] AUTODETECT spr round 2 (radius: 10) [00:05:20 -463010.941364] AUTODETECT spr round 3 (radius: 15) [00:08:04 -391717.355543] AUTODETECT spr round 4 (radius: 20) [00:11:21 -366358.993230] AUTODETECT spr round 5 (radius: 25) [00:15:05 -365034.353778] SPR radius for FAST iterations: 25 (autodetect) [00:15:05 -365034.353778] Model parameter optimization (eps = 3.000000) [00:15:13 -365026.755051] FAST spr round 1 (radius: 25) [00:18:32 -327866.389922] FAST spr round 2 (radius: 25) [00:21:17 -326771.326143] FAST spr round 3 (radius: 25) [00:23:55 -326700.772649] FAST spr round 4 (radius: 25) [00:26:00 -326695.859780] FAST spr round 5 (radius: 25) [00:28:03 -326695.859366] Model parameter optimization (eps = 1.000000) [00:28:09 -326695.719639] SLOW spr round 1 (radius: 5) [00:31:15 -326609.715769] SLOW spr round 2 (radius: 5) [00:33:48 -326578.622397] SLOW spr round 3 (radius: 5) [00:36:15 -326577.398284] SLOW spr round 4 (radius: 5) [00:38:38 -326577.398181] SLOW spr round 5 (radius: 10) [00:41:16 -326575.108848] SLOW spr round 6 (radius: 5) [00:44:25 -326573.644007] SLOW spr round 7 (radius: 5) [00:47:11 -326572.444626] SLOW spr round 8 (radius: 5) [00:50:37 -326572.444404] SLOW spr round 9 (radius: 10) [00:53:39 -326571.562360] SLOW spr round 10 (radius: 5) [00:58:17 -326569.981280] SLOW spr round 11 (radius: 5) [01:03:02 -326569.981231] SLOW spr round 12 (radius: 10) [01:07:14 -326569.981231] SLOW spr round 13 (radius: 15) [01:14:39 -326569.981231] SLOW spr round 14 (radius: 20) [01:26:52 -326569.981231] SLOW spr round 15 (radius: 25) [01:42:26 -326569.981231] Model parameter optimization (eps = 0.100000) [01:42:34] ML tree search #1, logLikelihood: -326569.974716 [01:42:34 -957003.310936] Initial branch length optimization [01:42:38 -810419.890568] Model parameter optimization (eps = 10.000000) [01:43:03 -809372.764294] AUTODETECT spr round 1 (radius: 5) [01:50:57 -608530.692267] AUTODETECT spr round 2 (radius: 10) [02:01:38 -476588.988330] AUTODETECT spr round 3 (radius: 15) [02:34:57 -407422.258628] AUTODETECT spr round 4 (radius: 20) [03:45:24 -373198.293011] AUTODETECT spr round 5 (radius: 25) [04:50:14 -369258.270421] SPR radius for FAST iterations: 25 (autodetect) [04:50:14 -369258.270421] Model parameter optimization (eps = 3.000000) [04:51:41 -369125.070325] FAST spr round 1 (radius: 25) [06:21:54 -327935.477885] FAST spr round 2 (radius: 25) [07:27:10 -326694.083420] FAST spr round 3 (radius: 25) [08:05:04 -326580.889013] FAST spr round 4 (radius: 25) [08:34:20 -326564.675576] FAST spr round 5 (radius: 25) [08:43:00 -326564.675241] Model parameter optimization (eps = 1.000000) [08:43:18 -326561.819463] SLOW spr round 1 (radius: 5) [08:46:03 -326443.223326] SLOW spr round 2 (radius: 5) [08:48:32 -326430.815731] SLOW spr round 3 (radius: 5) [08:51:05 -326430.180941] SLOW spr round 4 (radius: 5) [08:56:17 -326430.179562] SLOW spr round 5 (radius: 10) [09:05:04 -326428.366658] SLOW spr round 6 (radius: 5) [09:13:13 -326424.760899] SLOW spr round 7 (radius: 5) [09:21:14 -326423.630171] SLOW spr round 8 (radius: 5) [09:29:10 -326423.630129] SLOW spr round 9 (radius: 10) [09:37:20 -326423.630128] SLOW spr round 10 (radius: 15) [09:52:59 -326423.630128] SLOW spr round 11 (radius: 20) [13:07:52 -326423.630128] SLOW spr round 12 (radius: 25) [17:14:49 -326423.630128] Model parameter optimization (eps = 0.100000) [17:14:58] ML tree search #2, logLikelihood: -326423.411893 [17:14:58 -955421.805733] Initial branch length optimization [17:15:01 -809588.249673] Model parameter optimization (eps = 10.000000) [17:15:31 -808481.453919] AUTODETECT spr round 1 (radius: 5) [17:17:42 -623233.910885] AUTODETECT spr round 2 (radius: 10) [17:20:10 -485834.920712] AUTODETECT spr round 3 (radius: 15) [17:22:53 -426659.764989] AUTODETECT spr round 4 (radius: 20) [17:26:53 -392785.862936] AUTODETECT spr round 5 (radius: 25) [18:02:19 -380205.598684] SPR radius for FAST iterations: 25 (autodetect) [18:02:19 -380205.598684] Model parameter optimization (eps = 3.000000) [18:02:46 -380070.468706] FAST spr round 1 (radius: 25) [18:06:05 -328899.865793] FAST spr round 2 (radius: 25) [18:08:34 -326789.003598] FAST spr round 3 (radius: 25) [18:10:45 -326558.912614] FAST spr round 4 (radius: 25) [18:12:43 -326539.550688] FAST spr round 5 (radius: 25) [18:14:33 -326538.164691] FAST spr round 6 (radius: 25) [18:16:21 -326530.593445] FAST spr round 7 (radius: 25) [18:18:10 -326525.641698] FAST spr round 8 (radius: 25) [18:19:57 -326523.614124] FAST spr round 9 (radius: 25) [18:21:41 -326520.955314] FAST spr round 10 (radius: 25) [18:23:24 -326520.955225] Model parameter optimization (eps = 1.000000) [18:23:28 -326520.902886] SLOW spr round 1 (radius: 5) [18:25:58 -326441.499062] SLOW spr round 2 (radius: 5) [18:28:22 -326434.979238] SLOW spr round 3 (radius: 5) [18:30:47 -326430.686851] SLOW spr round 4 (radius: 5) [18:33:02 -326428.207546] SLOW spr round 5 (radius: 5) [18:35:20 -326426.765371] SLOW spr round 6 (radius: 5) [18:37:37 -326426.765351] SLOW spr round 7 (radius: 10) [18:40:00 -326424.108572] SLOW spr round 8 (radius: 5) [18:42:54 -326422.377906] SLOW spr round 9 (radius: 5) [18:45:23 -326422.377899] SLOW spr round 10 (radius: 10) [18:47:44 -326422.377899] SLOW spr round 11 (radius: 15) [18:51:33 -326422.377899] SLOW spr round 12 (radius: 20) [18:57:03 -326422.377899] SLOW spr round 13 (radius: 25) [19:04:13 -326422.377899] Model parameter optimization (eps = 0.100000) [19:04:17] ML tree search #3, logLikelihood: -326422.374925 [19:04:17 -958612.305694] Initial branch length optimization [19:04:20 -812814.451942] Model parameter optimization (eps = 10.000000) [19:04:55 -811649.418138] AUTODETECT spr round 1 (radius: 5) [19:07:12 -619708.565242] AUTODETECT spr round 2 (radius: 10) [19:09:44 -474041.107891] AUTODETECT spr round 3 (radius: 15) [19:12:28 -401865.638079] AUTODETECT spr round 4 (radius: 20) [19:15:47 -374322.513931] AUTODETECT spr round 5 (radius: 25) [19:19:47 -370577.472315] SPR radius for FAST iterations: 25 (autodetect) [19:19:47 -370577.472315] Model parameter optimization (eps = 3.000000) [19:20:11 -370438.396047] FAST spr round 1 (radius: 25) [19:23:17 -328661.908089] FAST spr round 2 (radius: 25) [19:25:41 -326715.349844] FAST spr round 3 (radius: 25) [19:27:50 -326554.273505] FAST spr round 4 (radius: 25) [19:29:41 -326551.973001] FAST spr round 5 (radius: 25) [19:31:30 -326551.972856] Model parameter optimization (eps = 1.000000) [19:31:49 -326522.513971] SLOW spr round 1 (radius: 5) [19:34:26 -326440.727648] SLOW spr round 2 (radius: 5) [19:36:48 -326436.374640] SLOW spr round 3 (radius: 5) [19:39:07 -326435.890901] SLOW spr round 4 (radius: 5) [19:41:22 -326435.890886] SLOW spr round 5 (radius: 10) [19:43:40 -326434.872553] SLOW spr round 6 (radius: 5) [19:46:24 -326434.872422] SLOW spr round 7 (radius: 10) [19:49:04 -326434.872410] SLOW spr round 8 (radius: 15) [19:52:52 -326434.872405] SLOW spr round 9 (radius: 20) [20:07:35 -326434.872402] SLOW spr round 10 (radius: 25) [20:14:55 -326434.872400] Model parameter optimization (eps = 0.100000) [20:15:09] ML tree search #4, logLikelihood: -326434.507704 [20:15:09 -954543.825304] Initial branch length optimization [20:15:12 -809631.943887] Model parameter optimization (eps = 10.000000) [20:15:44 -808505.010069] AUTODETECT spr round 1 (radius: 5) [20:17:57 -623433.165644] AUTODETECT spr round 2 (radius: 10) [20:20:29 -467433.180150] AUTODETECT spr round 3 (radius: 15) [20:23:09 -407174.158248] AUTODETECT spr round 4 (radius: 20) [20:26:24 -375939.033790] AUTODETECT spr round 5 (radius: 25) [20:29:47 -372898.840199] SPR radius for FAST iterations: 25 (autodetect) [20:29:47 -372898.840199] Model parameter optimization (eps = 3.000000) [20:30:09 -372754.697142] FAST spr round 1 (radius: 25) [20:33:22 -328837.706554] FAST spr round 2 (radius: 25) [20:35:52 -326677.952838] FAST spr round 3 (radius: 25) [20:38:04 -326525.717473] FAST spr round 4 (radius: 25) [20:39:56 -326523.563431] FAST spr round 5 (radius: 25) [20:41:45 -326523.563111] Model parameter optimization (eps = 1.000000) [20:41:54 -326523.152665] SLOW spr round 1 (radius: 5) [20:44:32 -326426.455164] SLOW spr round 2 (radius: 5) [20:46:57 -326416.850125] SLOW spr round 3 (radius: 5) [20:49:15 -326416.848884] SLOW spr round 4 (radius: 10) [20:51:39 -326416.848704] SLOW spr round 5 (radius: 15) [20:55:45 -326416.848673] SLOW spr round 6 (radius: 20) [21:01:22 -326416.848667] SLOW spr round 7 (radius: 25) [21:08:27 -326416.848667] Model parameter optimization (eps = 0.100000) [21:08:35] ML tree search #5, logLikelihood: -326416.763539 [21:08:35 -957516.000407] Initial branch length optimization [21:08:38 -811546.317944] Model parameter optimization (eps = 10.000000) [21:09:12 -810420.994873] AUTODETECT spr round 1 (radius: 5) [21:11:23 -609757.659413] AUTODETECT spr round 2 (radius: 10) [21:13:50 -466749.859757] AUTODETECT spr round 3 (radius: 15) [21:16:28 -400566.879714] AUTODETECT spr round 4 (radius: 20) [21:19:53 -370777.606813] AUTODETECT spr round 5 (radius: 25) [21:23:41 -366035.341529] SPR radius for FAST iterations: 25 (autodetect) [21:23:41 -366035.341529] Model parameter optimization (eps = 3.000000) [21:24:03 -365906.632933] FAST spr round 1 (radius: 25) [21:27:09 -328066.895654] FAST spr round 2 (radius: 25) [21:29:33 -326631.369870] FAST spr round 3 (radius: 25) [21:31:40 -326545.116702] FAST spr round 4 (radius: 25) [21:33:34 -326537.699295] FAST spr round 5 (radius: 25) [21:35:21 -326537.699279] Model parameter optimization (eps = 1.000000) [21:35:41 -326518.589802] SLOW spr round 1 (radius: 5) [21:38:20 -326431.465966] SLOW spr round 2 (radius: 5) [21:40:43 -326420.718056] SLOW spr round 3 (radius: 5) [21:43:03 -326416.742508] SLOW spr round 4 (radius: 5) [21:45:21 -326414.299430] SLOW spr round 5 (radius: 5) [21:47:37 -326414.299139] SLOW spr round 6 (radius: 10) [21:50:01 -326411.383840] SLOW spr round 7 (radius: 5) [21:52:52 -326410.642699] SLOW spr round 8 (radius: 5) [21:55:24 -326410.642408] SLOW spr round 9 (radius: 10) [21:57:52 -326409.979069] SLOW spr round 10 (radius: 5) [22:00:41 -326409.192467] SLOW spr round 11 (radius: 5) [22:03:10 -326409.190979] SLOW spr round 12 (radius: 10) [22:05:37 -326409.190305] SLOW spr round 13 (radius: 15) [22:09:33 -326409.189981] SLOW spr round 14 (radius: 20) [22:15:07 -326409.189828] SLOW spr round 15 (radius: 25) [22:22:14 -326409.189755] Model parameter optimization (eps = 0.100000) [22:22:20] ML tree search #6, logLikelihood: -326409.128896 [22:22:20 -957926.676269] Initial branch length optimization [22:22:23 -812139.135066] Model parameter optimization (eps = 10.000000) [22:22:52 -810993.844095] AUTODETECT spr round 1 (radius: 5) [22:25:04 -613346.355111] AUTODETECT spr round 2 (radius: 10) [22:27:30 -479507.831744] AUTODETECT spr round 3 (radius: 15) [22:30:16 -417662.112509] AUTODETECT spr round 4 (radius: 20) [22:33:51 -386070.199864] AUTODETECT spr round 5 (radius: 25) [22:37:35 -372087.604135] SPR radius for FAST iterations: 25 (autodetect) [22:37:35 -372087.604135] Model parameter optimization (eps = 3.000000) [22:37:54 -371985.694517] FAST spr round 1 (radius: 25) [22:40:59 -327814.624874] FAST spr round 2 (radius: 25) [22:43:17 -326635.748033] FAST spr round 3 (radius: 25) [22:45:20 -326586.226580] FAST spr round 4 (radius: 25) [22:47:14 -326559.955368] FAST spr round 5 (radius: 25) [22:48:56 -326559.955273] Model parameter optimization (eps = 1.000000) [22:49:14 -326547.353614] SLOW spr round 1 (radius: 5) [22:51:43 -326449.877357] SLOW spr round 2 (radius: 5) [22:54:02 -326441.814738] SLOW spr round 3 (radius: 5) [22:56:14 -326438.994951] SLOW spr round 4 (radius: 5) [22:58:24 -326438.994652] SLOW spr round 5 (radius: 10) [23:00:42 -326433.858112] SLOW spr round 6 (radius: 5) [23:03:30 -326422.600061] SLOW spr round 7 (radius: 5) [23:05:53 -326418.219750] SLOW spr round 8 (radius: 5) [23:08:05 -326418.219745] SLOW spr round 9 (radius: 10) [23:10:20 -326417.443577] SLOW spr round 10 (radius: 5) [23:13:01 -326413.864250] SLOW spr round 11 (radius: 5) [23:15:23 -326413.863269] SLOW spr round 12 (radius: 10) [23:17:40 -326413.862813] SLOW spr round 13 (radius: 15) [23:21:26 -326413.862595] SLOW spr round 14 (radius: 20) [23:26:51 -326413.862492] SLOW spr round 15 (radius: 25) [23:33:51 -326413.862443] Model parameter optimization (eps = 0.100000) [23:33:56] ML tree search #7, logLikelihood: -326413.849671 [23:33:56 -950932.928424] Initial branch length optimization [23:34:00 -808138.708631] Model parameter optimization (eps = 10.000000) [23:34:25 -807008.213140] AUTODETECT spr round 1 (radius: 5) [23:36:26 -603206.873525] AUTODETECT spr round 2 (radius: 10) [23:38:47 -477574.942900] AUTODETECT spr round 3 (radius: 15) [23:41:20 -420361.105543] AUTODETECT spr round 4 (radius: 20) [23:44:31 -378052.994643] AUTODETECT spr round 5 (radius: 25) [23:47:47 -374351.751721] SPR radius for FAST iterations: 25 (autodetect) [23:47:47 -374351.751721] Model parameter optimization (eps = 3.000000) [23:47:57 -374262.485590] FAST spr round 1 (radius: 25) [23:51:00 -327837.262566] FAST spr round 2 (radius: 25) [23:53:19 -326666.256868] FAST spr round 3 (radius: 25) [23:55:15 -326635.226337] FAST spr round 4 (radius: 25) [23:56:58 -326629.316191] FAST spr round 5 (radius: 25) [23:58:36 -326629.316064] Model parameter optimization (eps = 1.000000) [23:58:41 -326629.041111] SLOW spr round 1 (radius: 5) [24:01:09 -326546.598474] SLOW spr round 2 (radius: 5) [24:03:23 -326535.106040] SLOW spr round 3 (radius: 5) [24:05:32 -326525.985488] SLOW spr round 4 (radius: 5) [24:07:36 -326525.336656] SLOW spr round 5 (radius: 5) [24:09:40 -326525.336512] SLOW spr round 6 (radius: 10) [24:11:53 -326525.336492] SLOW spr round 7 (radius: 15) [24:15:47 -326525.336489] SLOW spr round 8 (radius: 20) [24:21:08 -326525.336489] SLOW spr round 9 (radius: 25) [24:28:13 -326525.336489] Model parameter optimization (eps = 0.100000) [24:28:18] ML tree search #8, logLikelihood: -326525.328973 [24:28:18 -960234.007429] Initial branch length optimization [24:28:21 -813990.127639] Model parameter optimization (eps = 10.000000) [24:28:52 -812931.137491] AUTODETECT spr round 1 (radius: 5) [24:31:03 -612777.547768] AUTODETECT spr round 2 (radius: 10) [24:33:29 -481433.452641] AUTODETECT spr round 3 (radius: 15) [24:36:12 -404626.432391] AUTODETECT spr round 4 (radius: 20) [24:39:37 -377740.181170] AUTODETECT spr round 5 (radius: 25) [24:43:26 -371170.635151] SPR radius for FAST iterations: 25 (autodetect) [24:43:26 -371170.635151] Model parameter optimization (eps = 3.000000) [24:43:34 -371157.834174] FAST spr round 1 (radius: 25) [24:46:53 -328295.774418] FAST spr round 2 (radius: 25) [24:49:16 -326714.950899] FAST spr round 3 (radius: 25) [24:51:24 -326624.783930] FAST spr round 4 (radius: 25) [24:53:16 -326614.090140] FAST spr round 5 (radius: 25) [24:55:04 -326611.620552] FAST spr round 6 (radius: 25) [24:56:46 -326611.620531] Model parameter optimization (eps = 1.000000) [24:57:05 -326530.523807] SLOW spr round 1 (radius: 5) [24:59:35 -326440.579379] SLOW spr round 2 (radius: 5) [25:01:54 -326422.034508] SLOW spr round 3 (radius: 5) [25:04:08 -326415.895691] SLOW spr round 4 (radius: 5) [25:06:21 -326414.096290] SLOW spr round 5 (radius: 5) [25:08:31 -326414.096273] SLOW spr round 6 (radius: 10) [25:10:50 -326414.096273] SLOW spr round 7 (radius: 15) [25:15:02 -326414.096273] SLOW spr round 8 (radius: 20) [25:21:06 -326414.096273] SLOW spr round 9 (radius: 25) [25:28:56 -326414.096273] Model parameter optimization (eps = 0.100000) [25:29:05] ML tree search #9, logLikelihood: -326413.914691 [25:29:05 -958533.183045] Initial branch length optimization [25:29:08 -812695.744348] Model parameter optimization (eps = 10.000000) [25:29:37 -811554.468068] AUTODETECT spr round 1 (radius: 5) [25:31:46 -617344.707149] AUTODETECT spr round 2 (radius: 10) [25:34:05 -483540.932407] AUTODETECT spr round 3 (radius: 15) [25:36:42 -412151.538699] AUTODETECT spr round 4 (radius: 20) [25:39:56 -384097.282331] AUTODETECT spr round 5 (radius: 25) [25:43:51 -375083.040485] SPR radius for FAST iterations: 25 (autodetect) [25:43:51 -375083.040485] Model parameter optimization (eps = 3.000000) [25:43:59 -375076.914953] FAST spr round 1 (radius: 25) [25:47:14 -328162.685681] FAST spr round 2 (radius: 25) [26:08:41 -326765.840779] FAST spr round 3 (radius: 25) [26:10:43 -326646.176528] FAST spr round 4 (radius: 25) [26:12:28 -326630.199589] FAST spr round 5 (radius: 25) [26:14:08 -326629.751565] FAST spr round 6 (radius: 25) [26:15:46 -326629.751025] Model parameter optimization (eps = 1.000000) [26:16:07 -326520.685612] SLOW spr round 1 (radius: 5) [26:18:34 -326426.897750] SLOW spr round 2 (radius: 5) [26:20:50 -326415.396480] SLOW spr round 3 (radius: 5) [26:22:58 -326414.113156] SLOW spr round 4 (radius: 5) [26:25:06 -326414.113129] SLOW spr round 5 (radius: 10) [26:27:20 -326414.113129] SLOW spr round 6 (radius: 15) [26:31:15 -326414.113129] SLOW spr round 7 (radius: 20) [26:36:53 -326414.113129] SLOW spr round 8 (radius: 25) [26:44:16 -326414.113129] Model parameter optimization (eps = 0.100000) [26:44:29] ML tree search #10, logLikelihood: -326413.628481 [26:44:29 -959399.678508] Initial branch length optimization [26:44:32 -810748.007823] Model parameter optimization (eps = 10.000000) [26:45:01 -809731.468341] AUTODETECT spr round 1 (radius: 5) [26:47:15 -610710.583329] AUTODETECT spr round 2 (radius: 10) [26:49:43 -461459.181481] AUTODETECT spr round 3 (radius: 15) [26:52:32 -412953.902249] AUTODETECT spr round 4 (radius: 20) [26:55:55 -381369.278554] AUTODETECT spr round 5 (radius: 25) [26:59:20 -376304.348265] SPR radius for FAST iterations: 25 (autodetect) [26:59:20 -376304.348265] Model parameter optimization (eps = 3.000000) [26:59:29 -376291.354468] FAST spr round 1 (radius: 25) [27:02:47 -327983.918666] FAST spr round 2 (radius: 25) [27:05:07 -326729.769134] FAST spr round 3 (radius: 25) [27:07:13 -326649.685268] FAST spr round 4 (radius: 25) [27:09:05 -326641.992034] FAST spr round 5 (radius: 25) [27:10:51 -326641.991277] Model parameter optimization (eps = 1.000000) [27:10:57 -326641.244212] SLOW spr round 1 (radius: 5) [27:13:35 -326555.068505] SLOW spr round 2 (radius: 5) [27:16:06 -326537.406228] SLOW spr round 3 (radius: 5) [27:18:23 -326537.322236] SLOW spr round 4 (radius: 10) [27:20:47 -326537.322065] SLOW spr round 5 (radius: 15) [27:24:58 -326537.322064] SLOW spr round 6 (radius: 20) [27:30:45 -326537.322063] SLOW spr round 7 (radius: 25) [27:38:24 -326537.322063] Model parameter optimization (eps = 0.100000) [27:38:29] ML tree search #11, logLikelihood: -326537.308915 [27:38:29 -956738.494349] Initial branch length optimization [27:38:33 -812964.585074] Model parameter optimization (eps = 10.000000) [27:38:59 -811824.056608] AUTODETECT spr round 1 (radius: 5) [27:41:05 -606542.738441] AUTODETECT spr round 2 (radius: 10) [27:43:24 -487236.949677] AUTODETECT spr round 3 (radius: 15) [27:46:14 -386380.978456] AUTODETECT spr round 4 (radius: 20) [27:49:27 -372318.616000] AUTODETECT spr round 5 (radius: 25) [27:53:07 -370095.048909] SPR radius for FAST iterations: 25 (autodetect) [27:53:07 -370095.048909] Model parameter optimization (eps = 3.000000) [27:53:15 -370086.636950] FAST spr round 1 (radius: 25) [27:56:21 -329128.087606] FAST spr round 2 (radius: 25) [27:58:36 -326803.136686] FAST spr round 3 (radius: 25) [28:00:37 -326641.325719] FAST spr round 4 (radius: 25) [28:02:24 -326633.038898] FAST spr round 5 (radius: 25) [28:04:03 -326633.038255] Model parameter optimization (eps = 1.000000) [28:04:07 -326632.924161] SLOW spr round 1 (radius: 5) [28:06:36 -326541.295861] SLOW spr round 2 (radius: 5) [28:08:49 -326536.658066] SLOW spr round 3 (radius: 5) [28:10:57 -326536.095031] SLOW spr round 4 (radius: 5) [28:13:05 -326536.095025] SLOW spr round 5 (radius: 10) [28:15:19 -326536.095025] SLOW spr round 6 (radius: 15) [28:19:21 -326536.095025] SLOW spr round 7 (radius: 20) [28:24:56 -326536.095025] SLOW spr round 8 (radius: 25) [28:32:30 -326536.095025] Model parameter optimization (eps = 0.100000) [28:32:34] ML tree search #12, logLikelihood: -326536.090349 [28:32:34 -963114.413924] Initial branch length optimization [28:32:37 -813788.645089] Model parameter optimization (eps = 10.000000) [28:33:15 -812788.429475] AUTODETECT spr round 1 (radius: 5) [28:35:28 -616811.037815] AUTODETECT spr round 2 (radius: 10) [28:37:55 -473805.457420] AUTODETECT spr round 3 (radius: 15) [28:40:37 -416842.468035] AUTODETECT spr round 4 (radius: 20) [28:44:06 -374118.426959] AUTODETECT spr round 5 (radius: 25) [28:47:27 -367508.695693] SPR radius for FAST iterations: 25 (autodetect) [28:47:27 -367508.695693] Model parameter optimization (eps = 3.000000) [28:47:35 -367500.004835] FAST spr round 1 (radius: 25) [28:50:44 -328221.970663] FAST spr round 2 (radius: 25) [28:53:07 -326700.978835] FAST spr round 3 (radius: 25) [28:55:10 -326649.783429] FAST spr round 4 (radius: 25) [28:57:00 -326645.625700] FAST spr round 5 (radius: 25) [28:58:46 -326645.625515] Model parameter optimization (eps = 1.000000) [28:58:52 -326645.513940] SLOW spr round 1 (radius: 5) [29:01:28 -326540.782163] SLOW spr round 2 (radius: 5) [29:03:51 -326531.577769] SLOW spr round 3 (radius: 5) [29:06:05 -326530.760753] SLOW spr round 4 (radius: 5) [29:08:20 -326530.695746] SLOW spr round 5 (radius: 10) [29:10:37 -326530.695570] SLOW spr round 6 (radius: 15) [29:14:38 -326530.695563] SLOW spr round 7 (radius: 20) [29:20:07 -326530.695562] SLOW spr round 8 (radius: 25) [29:27:07 -326530.695562] Model parameter optimization (eps = 0.100000) [29:27:11] ML tree search #13, logLikelihood: -326530.691398 [29:27:11 -953877.935277] Initial branch length optimization [29:27:14 -808841.562610] Model parameter optimization (eps = 10.000000) [29:27:50 -807764.007894] AUTODETECT spr round 1 (radius: 5) [29:29:59 -615498.776650] AUTODETECT spr round 2 (radius: 10) [29:32:20 -480571.766657] AUTODETECT spr round 3 (radius: 15) [29:35:02 -402605.955997] AUTODETECT spr round 4 (radius: 20) [29:37:55 -375895.377060] AUTODETECT spr round 5 (radius: 25) [29:40:58 -372361.970630] SPR radius for FAST iterations: 25 (autodetect) [29:40:58 -372361.970630] Model parameter optimization (eps = 3.000000) [29:41:07 -372350.533930] FAST spr round 1 (radius: 25) [29:44:15 -328536.353760] FAST spr round 2 (radius: 25) [29:46:36 -326718.388890] FAST spr round 3 (radius: 25) [29:48:40 -326641.317645] FAST spr round 4 (radius: 25) [29:50:26 -326633.487947] FAST spr round 5 (radius: 25) [29:52:09 -326633.487840] Model parameter optimization (eps = 1.000000) [29:52:30 -326554.299067] SLOW spr round 1 (radius: 5) [29:55:03 -326464.895945] SLOW spr round 2 (radius: 5) [29:57:18 -326458.521695] SLOW spr round 3 (radius: 5) [29:59:30 -326454.341606] SLOW spr round 4 (radius: 5) [30:01:38 -326454.341550] SLOW spr round 5 (radius: 10) [30:03:53 -326454.341548] SLOW spr round 6 (radius: 15) [30:07:54 -326454.341547] SLOW spr round 7 (radius: 20) [30:13:37 -326454.341547] SLOW spr round 8 (radius: 25) [30:21:18 -326454.341547] Model parameter optimization (eps = 0.100000) [30:21:28] ML tree search #14, logLikelihood: -326454.115303 [30:21:28 -960284.179880] Initial branch length optimization [30:21:31 -809585.832655] Model parameter optimization (eps = 10.000000) [30:21:56 -808446.946254] AUTODETECT spr round 1 (radius: 5) [30:24:00 -620928.982129] AUTODETECT spr round 2 (radius: 10) [30:26:17 -462429.161054] AUTODETECT spr round 3 (radius: 15) [30:28:49 -400545.826879] AUTODETECT spr round 4 (radius: 20) [30:32:03 -369240.114645] AUTODETECT spr round 5 (radius: 25) [30:35:39 -367610.313187] SPR radius for FAST iterations: 25 (autodetect) [30:35:39 -367610.313187] Model parameter optimization (eps = 3.000000) [30:36:01 -367453.622249] FAST spr round 1 (radius: 25) [30:39:04 -328116.414038] FAST spr round 2 (radius: 25) [30:41:22 -326636.434692] FAST spr round 3 (radius: 25) [30:43:21 -326572.128439] FAST spr round 4 (radius: 25) [30:45:03 -326563.578388] FAST spr round 5 (radius: 25) [30:46:40 -326563.566058] Model parameter optimization (eps = 1.000000) [30:46:56 -326555.251492] SLOW spr round 1 (radius: 5) [30:49:24 -326480.356543] SLOW spr round 2 (radius: 5) [30:51:41 -326453.868557] SLOW spr round 3 (radius: 5) [30:53:51 -326443.387514] SLOW spr round 4 (radius: 5) [30:55:54 -326442.136152] SLOW spr round 5 (radius: 5) [30:57:58 -326440.887678] SLOW spr round 6 (radius: 5) [31:00:00 -326439.441282] SLOW spr round 7 (radius: 5) [31:02:01 -326439.441272] SLOW spr round 8 (radius: 10) [31:04:10 -326438.964235] SLOW spr round 9 (radius: 5) [31:06:47 -326438.963997] SLOW spr round 10 (radius: 10) [31:09:15 -326438.963971] SLOW spr round 11 (radius: 15) [31:12:53 -326438.963968] SLOW spr round 12 (radius: 20) [31:18:48 -326438.963967] SLOW spr round 13 (radius: 25) [31:26:28 -326438.963967] Model parameter optimization (eps = 0.100000) [31:26:39] ML tree search #15, logLikelihood: -326436.833438 [31:26:39 -956406.123639] Initial branch length optimization [31:26:42 -806811.144674] Model parameter optimization (eps = 10.000000) [31:27:09 -805702.199678] AUTODETECT spr round 1 (radius: 5) [31:29:12 -618684.902425] AUTODETECT spr round 2 (radius: 10) [31:31:28 -490891.254967] AUTODETECT spr round 3 (radius: 15) [31:34:04 -417156.762949] AUTODETECT spr round 4 (radius: 20) [31:37:30 -381488.875627] AUTODETECT spr round 5 (radius: 25) [31:40:58 -374264.520257] SPR radius for FAST iterations: 25 (autodetect) [31:40:58 -374264.520257] Model parameter optimization (eps = 3.000000) [31:41:17 -374154.841844] FAST spr round 1 (radius: 25) [31:44:19 -328102.846085] FAST spr round 2 (radius: 25) [31:46:38 -326625.809007] FAST spr round 3 (radius: 25) [31:48:37 -326548.411807] FAST spr round 4 (radius: 25) [31:50:27 -326529.447151] FAST spr round 5 (radius: 25) [31:52:07 -326529.446982] Model parameter optimization (eps = 1.000000) [31:52:22 -326518.700842] SLOW spr round 1 (radius: 5) [31:54:47 -326437.200778] SLOW spr round 2 (radius: 5) [31:57:02 -326423.239360] SLOW spr round 3 (radius: 5) [31:59:09 -326423.239345] SLOW spr round 4 (radius: 10) [32:01:21 -326423.239345] SLOW spr round 5 (radius: 15) [32:05:10 -326423.239345] SLOW spr round 6 (radius: 20) [32:10:23 -326423.239345] SLOW spr round 7 (radius: 25) [32:17:09 -326423.239345] Model parameter optimization (eps = 0.100000) [32:17:17] ML tree search #16, logLikelihood: -326422.820326 [32:17:17 -951902.987044] Initial branch length optimization [32:17:20 -806693.963095] Model parameter optimization (eps = 10.000000) [32:17:47 -805190.193927] AUTODETECT spr round 1 (radius: 5) [32:19:51 -620480.473833] AUTODETECT spr round 2 (radius: 10) [32:22:14 -471212.997872] AUTODETECT spr round 3 (radius: 15) [32:24:41 -419757.707847] AUTODETECT spr round 4 (radius: 20) [32:28:05 -385251.587201] AUTODETECT spr round 5 (radius: 25) [32:31:34 -375318.389883] SPR radius for FAST iterations: 25 (autodetect) [32:31:34 -375318.389883] Model parameter optimization (eps = 3.000000) [32:31:54 -375183.271317] FAST spr round 1 (radius: 25) [32:34:53 -328333.931405] FAST spr round 2 (radius: 25) [32:37:06 -326660.574042] FAST spr round 3 (radius: 25) [32:39:04 -326566.485180] FAST spr round 4 (radius: 25) [32:40:52 -326534.802480] FAST spr round 5 (radius: 25) [32:42:36 -326526.761762] FAST spr round 6 (radius: 25) [32:44:12 -326526.761758] Model parameter optimization (eps = 1.000000) [32:44:27 -326522.213123] SLOW spr round 1 (radius: 5) [32:46:50 -326458.302726] SLOW spr round 2 (radius: 5) [32:49:03 -326446.888743] SLOW spr round 3 (radius: 5) [32:51:10 -326440.602969] SLOW spr round 4 (radius: 5) [32:53:15 -326440.602809] SLOW spr round 5 (radius: 10) [32:55:27 -326440.602804] SLOW spr round 6 (radius: 15) [32:59:16 -326440.602804] SLOW spr round 7 (radius: 20) [33:04:41 -326440.602803] SLOW spr round 8 (radius: 25) [33:11:51 -326440.602803] Model parameter optimization (eps = 0.100000) [33:12:02] ML tree search #17, logLikelihood: -326440.415741 [33:12:02 -953208.768265] Initial branch length optimization [33:12:05 -807783.126898] Model parameter optimization (eps = 10.000000) [33:12:45 -806725.075651] AUTODETECT spr round 1 (radius: 5) [33:14:47 -617096.984583] AUTODETECT spr round 2 (radius: 10) [33:17:06 -481446.889587] AUTODETECT spr round 3 (radius: 15) [33:19:41 -408123.730340] AUTODETECT spr round 4 (radius: 20) [33:22:54 -378124.809141] AUTODETECT spr round 5 (radius: 25) [33:26:49 -368761.164755] SPR radius for FAST iterations: 25 (autodetect) [33:26:49 -368761.164755] Model parameter optimization (eps = 3.000000) [33:26:57 -368749.006782] FAST spr round 1 (radius: 25) [33:29:57 -328376.400618] FAST spr round 2 (radius: 25) [33:32:14 -326743.862072] FAST spr round 3 (radius: 25) [33:34:16 -326614.039533] FAST spr round 4 (radius: 25) [33:36:01 -326605.462245] FAST spr round 5 (radius: 25) [33:37:40 -326603.651914] FAST spr round 6 (radius: 25) [33:39:17 -326603.651907] Model parameter optimization (eps = 1.000000) [33:39:37 -326542.519591] SLOW spr round 1 (radius: 5) [33:42:01 -326457.094245] SLOW spr round 2 (radius: 5) [33:44:17 -326439.951435] SLOW spr round 3 (radius: 5) [33:46:26 -326438.590420] SLOW spr round 4 (radius: 5) [33:48:32 -326438.590412] SLOW spr round 5 (radius: 10) [33:50:43 -326438.590412] SLOW spr round 6 (radius: 15) [33:54:36 -326438.590412] SLOW spr round 7 (radius: 20) [34:00:06 -326438.590412] SLOW spr round 8 (radius: 25) [34:47:53 -326438.590412] Model parameter optimization (eps = 0.100000) [34:47:59] ML tree search #18, logLikelihood: -326438.462276 [34:47:59 -961522.301451] Initial branch length optimization [34:48:03 -813019.544982] Model parameter optimization (eps = 10.000000) [34:48:29 -811903.140337] AUTODETECT spr round 1 (radius: 5) [34:50:31 -619375.823553] AUTODETECT spr round 2 (radius: 10) [34:52:47 -470550.324175] AUTODETECT spr round 3 (radius: 15) [34:55:17 -402628.772979] AUTODETECT spr round 4 (radius: 20) [34:58:07 -376178.957213] AUTODETECT spr round 5 (radius: 25) [35:01:35 -372599.178508] SPR radius for FAST iterations: 25 (autodetect) [35:01:35 -372599.178508] Model parameter optimization (eps = 3.000000) [35:01:42 -372591.789858] FAST spr round 1 (radius: 25) [35:04:34 -328661.040252] FAST spr round 2 (radius: 25) [35:06:44 -326676.600944] FAST spr round 3 (radius: 25) [35:08:35 -326637.362085] FAST spr round 4 (radius: 25) [35:10:13 -326636.842036] FAST spr round 5 (radius: 25) [35:11:47 -326633.778714] FAST spr round 6 (radius: 25) [35:13:20 -326629.467218] FAST spr round 7 (radius: 25) [35:14:53 -326629.467208] Model parameter optimization (eps = 1.000000) [35:14:58 -326629.236389] SLOW spr round 1 (radius: 5) [35:17:15 -326524.267199] SLOW spr round 2 (radius: 5) [35:19:25 -326513.574887] SLOW spr round 3 (radius: 5) [35:21:28 -326513.013024] SLOW spr round 4 (radius: 5) [35:23:34 -326511.724094] SLOW spr round 5 (radius: 5) [35:25:35 -326511.721640] SLOW spr round 6 (radius: 10) [35:27:42 -326511.721185] SLOW spr round 7 (radius: 15) [35:31:29 -326511.721105] SLOW spr round 8 (radius: 20) [36:14:43 -326511.721090] SLOW spr round 9 (radius: 25) [36:21:39 -326511.721088] Model parameter optimization (eps = 0.100000) [36:21:43] ML tree search #19, logLikelihood: -326511.708998 [36:21:43 -960597.818827] Initial branch length optimization [36:21:46 -813300.976488] Model parameter optimization (eps = 10.000000) [36:22:24 -812195.550049] AUTODETECT spr round 1 (radius: 5) [36:24:22 -610889.271846] AUTODETECT spr round 2 (radius: 10) [36:26:35 -484404.202458] AUTODETECT spr round 3 (radius: 15) [36:28:57 -409557.574629] AUTODETECT spr round 4 (radius: 20) [36:31:48 -385518.050192] AUTODETECT spr round 5 (radius: 25) [36:34:57 -376775.171278] SPR radius for FAST iterations: 25 (autodetect) [36:34:57 -376775.171278] Model parameter optimization (eps = 3.000000) [36:35:18 -376596.365661] FAST spr round 1 (radius: 25) [36:38:14 -328517.851951] FAST spr round 2 (radius: 25) [36:40:22 -326793.185522] FAST spr round 3 (radius: 25) [36:42:18 -326617.340242] FAST spr round 4 (radius: 25) [36:43:58 -326573.439130] FAST spr round 5 (radius: 25) [36:45:32 -326573.036019] FAST spr round 6 (radius: 25) [36:47:04 -326573.035757] Model parameter optimization (eps = 1.000000) [36:47:20 -326543.667671] SLOW spr round 1 (radius: 5) [36:49:38 -326444.147635] SLOW spr round 2 (radius: 5) [36:51:48 -326430.207222] SLOW spr round 3 (radius: 5) [36:53:49 -326430.207187] SLOW spr round 4 (radius: 10) [36:55:58 -326425.590327] SLOW spr round 5 (radius: 5) [36:58:33 -326424.315457] SLOW spr round 6 (radius: 5) [37:00:49 -326424.315311] SLOW spr round 7 (radius: 10) [37:03:02 -326421.163778] SLOW spr round 8 (radius: 5) [37:05:36 -326415.134860] SLOW spr round 9 (radius: 5) [37:07:52 -326415.134812] SLOW spr round 10 (radius: 10) [37:10:04 -326415.134812] SLOW spr round 11 (radius: 15) [37:13:44 -326415.134812] SLOW spr round 12 (radius: 20) [37:19:07 -326415.134812] SLOW spr round 13 (radius: 25) [37:26:05 -326415.134812] Model parameter optimization (eps = 0.100000) [37:26:20] ML tree search #20, logLikelihood: -326414.581091 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.126384,0.241969) (0.242261,0.353631) (0.288508,0.713116) (0.342847,1.977584) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -326409.128896 AIC score: 656828.257792 / AICc score: 8700888.257792 / BIC score: 665623.950827 Free parameters (model + branch lengths): 2005 WARNING: Number of free parameters (K=2005) is larger than alignment size (n=594). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/3_mltree/Q4G176.raxml.bestTree All ML trees saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/3_mltree/Q4G176.raxml.mlTrees Optimized model saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/3_mltree/Q4G176.raxml.bestModel Execution log saved to: /cta/users/eakkoyun/WORKFOLDER/PROD/run_040621/phylogeny-snakemake/results/Q4G176/3_mltree/Q4G176.raxml.log Analysis started: 24-Jun-2021 13:10:18 / finished: 26-Jun-2021 02:36:39 Elapsed time: 134780.629 seconds