RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 03-Jul-2021 04:25:56 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/2_msa/P24903_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/3_mltree/P24903 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/2_msa/P24903_trimmed_msa.fasta [00:00:00] Loaded alignment with 1001 taxa and 486 sites WARNING: Sequences tr_H2R0G3_H2R0G3_PANTR_9598 and tr_A0A2R9AIM3_A0A2R9AIM3_PANPA_9597 are exactly identical! WARNING: Sequences tr_A0A096MWY5_A0A096MWY5_PAPAN_9555 and tr_A0A2K5NCN0_A0A2K5NCN0_CERAT_9531 are exactly identical! WARNING: Sequences tr_A0A1U7Q203_A0A1U7Q203_MESAU_10036 and sp_P51581_CP2E1_MESAU_10036 are exactly identical! WARNING: Sequences tr_A0A1U7Q212_A0A1U7Q212_MESAU_10036 and sp_P24455_CP2A9_MESAU_10036 are exactly identical! WARNING: Sequences tr_A0A1U7Q2C6_A0A1U7Q2C6_MESAU_10036 and sp_P33263_CP2CQ_MESAU_10036 are exactly identical! WARNING: Sequences tr_A0A1U7Q2H6_A0A1U7Q2H6_MESAU_10036 and sp_P33265_CP2CS_MESAU_10036 are exactly identical! WARNING: Sequences tr_A0A1U7Q3P0_A0A1U7Q3P0_MESAU_10036 and sp_Q08078_CP2CP_MESAU_10036 are exactly identical! WARNING: Duplicate sequences found: 7 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/3_mltree/P24903.raxml.reduced.phy Alignment comprises 1 partitions and 486 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 486 / 486 Gaps: 2.52 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/3_mltree/P24903.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 1001 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 70 / 5600 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -769412.762468] Initial branch length optimization [00:00:02 -671253.984112] Model parameter optimization (eps = 10.000000) [00:00:27 -669611.605574] AUTODETECT spr round 1 (radius: 5) [00:02:06 -515061.433532] AUTODETECT spr round 2 (radius: 10) [00:04:02 -367779.390494] AUTODETECT spr round 3 (radius: 15) [00:06:02 -307968.254322] AUTODETECT spr round 4 (radius: 20) [00:08:25 -296926.787802] AUTODETECT spr round 5 (radius: 25) [00:11:26 -296430.795503] SPR radius for FAST iterations: 25 (autodetect) [00:11:26 -296430.795503] Model parameter optimization (eps = 3.000000) [00:11:45 -296215.243516] FAST spr round 1 (radius: 25) [00:13:52 -266834.009075] FAST spr round 2 (radius: 25) [00:15:31 -265338.569137] FAST spr round 3 (radius: 25) [00:17:06 -265254.505353] FAST spr round 4 (radius: 25) [00:18:37 -265228.549683] FAST spr round 5 (radius: 25) [00:20:02 -265225.577613] FAST spr round 6 (radius: 25) [00:21:24 -265221.257439] FAST spr round 7 (radius: 25) [00:22:45 -265221.257409] Model parameter optimization (eps = 1.000000) [00:23:00 -265198.702087] SLOW spr round 1 (radius: 5) [00:24:50 -265148.985172] SLOW spr round 2 (radius: 5) [00:26:32 -265148.985166] SLOW spr round 3 (radius: 10) [00:28:16 -265148.985166] SLOW spr round 4 (radius: 15) [00:31:08 -265148.985166] SLOW spr round 5 (radius: 20) [00:35:13 -265148.985166] SLOW spr round 6 (radius: 25) [00:40:09 -265148.985166] Model parameter optimization (eps = 0.100000) [00:40:13] ML tree search #1, logLikelihood: -265148.946062 [00:40:13 -771958.957077] Initial branch length optimization [00:40:15 -674458.232687] Model parameter optimization (eps = 10.000000) [00:40:37 -672766.902786] AUTODETECT spr round 1 (radius: 5) [00:42:10 -510475.332820] AUTODETECT spr round 2 (radius: 10) [00:43:59 -378864.327876] AUTODETECT spr round 3 (radius: 15) [00:45:57 -308561.429088] AUTODETECT spr round 4 (radius: 20) [00:48:25 -300827.167017] AUTODETECT spr round 5 (radius: 25) [00:51:35 -298390.097484] SPR radius for FAST iterations: 25 (autodetect) [00:51:35 -298390.097484] Model parameter optimization (eps = 3.000000) [00:51:54 -298120.732437] FAST spr round 1 (radius: 25) [00:54:03 -266346.453983] FAST spr round 2 (radius: 25) [00:55:46 -265313.498809] FAST spr round 3 (radius: 25) [00:57:16 -265272.376206] FAST spr round 4 (radius: 25) [00:58:37 -265263.288939] FAST spr round 5 (radius: 25) [01:00:01 -265259.759951] FAST spr round 6 (radius: 25) [01:01:23 -265259.759943] Model parameter optimization (eps = 1.000000) [01:01:41 -265240.761866] SLOW spr round 1 (radius: 5) [01:03:36 -265146.985398] SLOW spr round 2 (radius: 5) [01:05:24 -265134.222719] SLOW spr round 3 (radius: 5) [01:07:04 -265134.222715] SLOW spr round 4 (radius: 10) [01:08:47 -265132.600186] SLOW spr round 5 (radius: 5) [01:10:51 -265132.600081] SLOW spr round 6 (radius: 10) [01:12:47 -265132.600081] SLOW spr round 7 (radius: 15) [01:15:25 -265132.600081] SLOW spr round 8 (radius: 20) [01:19:48 -265132.600081] SLOW spr round 9 (radius: 25) [01:25:07 -265132.600081] Model parameter optimization (eps = 0.100000) [01:25:11] ML tree search #2, logLikelihood: -265132.567119 [01:25:11 -770345.924927] Initial branch length optimization [01:25:13 -672678.703436] Model parameter optimization (eps = 10.000000) [01:25:34 -670950.472782] AUTODETECT spr round 1 (radius: 5) [01:27:09 -515766.411562] AUTODETECT spr round 2 (radius: 10) [01:28:59 -376818.226944] AUTODETECT spr round 3 (radius: 15) [01:30:50 -333311.869172] AUTODETECT spr round 4 (radius: 20) [01:33:10 -307180.825081] AUTODETECT spr round 5 (radius: 25) [01:36:11 -302237.058716] SPR radius for FAST iterations: 25 (autodetect) [01:36:11 -302237.058716] Model parameter optimization (eps = 3.000000) [01:36:27 -301903.922200] FAST spr round 1 (radius: 25) [01:38:30 -266853.870727] FAST spr round 2 (radius: 25) [01:40:09 -265349.542872] FAST spr round 3 (radius: 25) [01:41:43 -265244.913643] FAST spr round 4 (radius: 25) [01:43:09 -265238.669184] FAST spr round 5 (radius: 25) [01:44:32 -265234.455508] FAST spr round 6 (radius: 25) [01:45:53 -265234.455506] Model parameter optimization (eps = 1.000000) [01:46:03 -265226.946091] SLOW spr round 1 (radius: 5) [01:47:55 -265154.365595] SLOW spr round 2 (radius: 5) [01:49:38 -265150.304578] SLOW spr round 3 (radius: 5) [01:51:18 -265150.304532] SLOW spr round 4 (radius: 10) [01:53:02 -265149.292116] SLOW spr round 5 (radius: 5) [01:55:04 -265148.995861] SLOW spr round 6 (radius: 5) [01:56:52 -265148.995857] SLOW spr round 7 (radius: 10) [01:58:38 -265148.665505] SLOW spr round 8 (radius: 5) [02:00:39 -265148.665501] SLOW spr round 9 (radius: 10) [02:02:31 -265148.665501] SLOW spr round 10 (radius: 15) [02:05:08 -265148.665501] SLOW spr round 11 (radius: 20) [02:09:19 -265148.665501] SLOW spr round 12 (radius: 25) [02:14:12 -265148.665501] Model parameter optimization (eps = 0.100000) [02:14:22] ML tree search #3, logLikelihood: -265146.697861 [02:14:22 -770904.778958] Initial branch length optimization [02:14:24 -672934.137436] Model parameter optimization (eps = 10.000000) [02:14:48 -671294.263709] AUTODETECT spr round 1 (radius: 5) [02:16:18 -512923.919921] AUTODETECT spr round 2 (radius: 10) [02:18:04 -371370.213182] AUTODETECT spr round 3 (radius: 15) [02:19:51 -317131.716894] AUTODETECT spr round 4 (radius: 20) [02:21:56 -303036.185608] AUTODETECT spr round 5 (radius: 25) [02:24:34 -300813.163179] SPR radius for FAST iterations: 25 (autodetect) [02:24:34 -300813.163179] Model parameter optimization (eps = 3.000000) [02:24:51 -300474.723417] FAST spr round 1 (radius: 25) [02:26:49 -266652.555024] FAST spr round 2 (radius: 25) [02:28:24 -265351.479879] FAST spr round 3 (radius: 25) [02:29:50 -265272.848486] FAST spr round 4 (radius: 25) [02:31:07 -265267.995610] FAST spr round 5 (radius: 25) [02:32:22 -265267.995608] Model parameter optimization (eps = 1.000000) [02:32:34 -265260.652771] SLOW spr round 1 (radius: 5) [02:34:18 -265176.862657] SLOW spr round 2 (radius: 5) [02:35:55 -265171.583774] SLOW spr round 3 (radius: 5) [02:37:27 -265171.583761] SLOW spr round 4 (radius: 10) [02:39:03 -265166.072285] SLOW spr round 5 (radius: 5) [02:40:57 -265158.739515] SLOW spr round 6 (radius: 5) [02:42:37 -265158.739510] SLOW spr round 7 (radius: 10) [02:44:15 -265158.509542] SLOW spr round 8 (radius: 5) [02:46:07 -265153.569738] SLOW spr round 9 (radius: 5) [02:47:47 -265153.146011] SLOW spr round 10 (radius: 5) [02:49:21 -265153.145856] SLOW spr round 11 (radius: 10) [02:50:57 -265150.193533] SLOW spr round 12 (radius: 5) [02:52:49 -265149.525230] SLOW spr round 13 (radius: 5) [02:54:30 -265145.058042] SLOW spr round 14 (radius: 5) [02:56:04 -265145.058035] SLOW spr round 15 (radius: 10) [02:57:40 -265145.058035] SLOW spr round 16 (radius: 15) [03:00:15 -265145.058035] SLOW spr round 17 (radius: 20) [03:03:57 -265145.058035] SLOW spr round 18 (radius: 25) [03:08:35 -265145.058035] Model parameter optimization (eps = 0.100000) [03:08:45] ML tree search #4, logLikelihood: -265144.307539 [03:08:45 -770471.440244] Initial branch length optimization [03:08:48 -672038.131310] Model parameter optimization (eps = 10.000000) [03:09:12 -670314.587311] AUTODETECT spr round 1 (radius: 5) [03:10:43 -516250.732930] AUTODETECT spr round 2 (radius: 10) [03:12:30 -374707.647637] AUTODETECT spr round 3 (radius: 15) [03:14:18 -324649.619003] AUTODETECT spr round 4 (radius: 20) [03:16:47 -304024.600404] AUTODETECT spr round 5 (radius: 25) [03:19:37 -301925.037250] SPR radius for FAST iterations: 25 (autodetect) [03:19:37 -301925.037250] Model parameter optimization (eps = 3.000000) [03:19:53 -301584.310216] FAST spr round 1 (radius: 25) [03:21:49 -266261.132970] FAST spr round 2 (radius: 25) [03:23:22 -265333.643201] FAST spr round 3 (radius: 25) [03:24:49 -265258.624560] FAST spr round 4 (radius: 25) [03:26:07 -265238.779349] FAST spr round 5 (radius: 25) [03:27:22 -265232.988561] FAST spr round 6 (radius: 25) [03:28:36 -265223.068676] FAST spr round 7 (radius: 25) [03:29:48 -265223.068676] Model parameter optimization (eps = 1.000000) [03:30:01 -265204.392463] SLOW spr round 1 (radius: 5) [03:31:43 -265133.381937] SLOW spr round 2 (radius: 5) [03:33:18 -265129.986652] SLOW spr round 3 (radius: 5) [03:34:49 -265127.764581] SLOW spr round 4 (radius: 5) [03:36:21 -265127.764546] SLOW spr round 5 (radius: 10) [03:37:56 -265127.764546] SLOW spr round 6 (radius: 15) [03:40:34 -265127.764546] SLOW spr round 7 (radius: 20) [03:44:27 -265127.764546] SLOW spr round 8 (radius: 25) [03:49:21 -265127.764546] Model parameter optimization (eps = 0.100000) [03:49:28] ML tree search #5, logLikelihood: -265127.647462 [03:49:28 -772360.259427] Initial branch length optimization [03:49:30 -674623.463736] Model parameter optimization (eps = 10.000000) [03:49:58 -672855.180919] AUTODETECT spr round 1 (radius: 5) [03:51:27 -507607.248345] AUTODETECT spr round 2 (radius: 10) [03:53:12 -378805.269207] AUTODETECT spr round 3 (radius: 15) [03:55:02 -314704.064931] AUTODETECT spr round 4 (radius: 20) [03:57:24 -297822.561524] AUTODETECT spr round 5 (radius: 25) [04:00:34 -297466.006957] SPR radius for FAST iterations: 25 (autodetect) [04:00:34 -297466.006957] Model parameter optimization (eps = 3.000000) [04:00:48 -297162.556765] FAST spr round 1 (radius: 25) [04:02:42 -266318.544550] FAST spr round 2 (radius: 25) [04:04:13 -265343.903167] FAST spr round 3 (radius: 25) [04:05:39 -265271.049621] FAST spr round 4 (radius: 25) [04:06:58 -265258.620134] FAST spr round 5 (radius: 25) [04:08:15 -265247.185794] FAST spr round 6 (radius: 25) [04:09:30 -265245.052695] FAST spr round 7 (radius: 25) [04:10:43 -265245.052693] Model parameter optimization (eps = 1.000000) [04:10:55 -265219.275456] SLOW spr round 1 (radius: 5) [04:12:37 -265152.606279] SLOW spr round 2 (radius: 5) [04:14:12 -265144.241483] SLOW spr round 3 (radius: 5) [04:15:42 -265144.241472] SLOW spr round 4 (radius: 10) [04:17:17 -265133.519793] SLOW spr round 5 (radius: 5) [04:19:09 -265127.133134] SLOW spr round 6 (radius: 5) [04:20:49 -265127.133127] SLOW spr round 7 (radius: 10) [04:22:26 -265126.729540] SLOW spr round 8 (radius: 5) [04:24:16 -265124.238510] SLOW spr round 9 (radius: 5) [04:25:54 -265124.238510] SLOW spr round 10 (radius: 10) [04:27:31 -265124.238510] SLOW spr round 11 (radius: 15) [04:30:02 -265124.238510] SLOW spr round 12 (radius: 20) [04:33:55 -265124.238510] SLOW spr round 13 (radius: 25) [04:38:47 -265124.238510] Model parameter optimization (eps = 0.100000) [04:38:50] ML tree search #6, logLikelihood: -265124.171318 [04:38:50 -771014.982358] Initial branch length optimization [04:38:53 -671880.635479] Model parameter optimization (eps = 10.000000) [04:39:12 -670188.868994] AUTODETECT spr round 1 (radius: 5) [04:40:44 -516989.875043] AUTODETECT spr round 2 (radius: 10) [04:42:29 -382630.708033] AUTODETECT spr round 3 (radius: 15) [04:44:18 -319761.449452] AUTODETECT spr round 4 (radius: 20) [04:46:32 -300864.434419] AUTODETECT spr round 5 (radius: 25) [04:48:58 -299685.638640] SPR radius for FAST iterations: 25 (autodetect) [04:48:58 -299685.638640] Model parameter optimization (eps = 3.000000) [04:49:12 -299430.511840] FAST spr round 1 (radius: 25) [04:51:02 -266203.391602] FAST spr round 2 (radius: 25) [04:52:33 -265294.502178] FAST spr round 3 (radius: 25) [04:53:54 -265240.525601] FAST spr round 4 (radius: 25) [04:55:07 -265235.468630] FAST spr round 5 (radius: 25) [04:56:18 -265230.020806] FAST spr round 6 (radius: 25) [04:57:28 -265230.020793] Model parameter optimization (eps = 1.000000) [04:57:40 -265207.232965] SLOW spr round 1 (radius: 5) [04:59:18 -265139.779021] SLOW spr round 2 (radius: 5) [05:00:48 -265134.586992] SLOW spr round 3 (radius: 5) [05:02:15 -265134.586983] SLOW spr round 4 (radius: 10) [05:03:46 -265133.933307] SLOW spr round 5 (radius: 5) [05:05:54 -265127.512124] SLOW spr round 6 (radius: 5) [05:07:56 -265127.512109] SLOW spr round 7 (radius: 10) [05:09:50 -265126.974012] SLOW spr round 8 (radius: 5) [05:12:11 -265126.974006] SLOW spr round 9 (radius: 10) [05:14:06 -265126.974006] SLOW spr round 10 (radius: 15) [05:17:01 -265126.974006] SLOW spr round 11 (radius: 20) [05:21:11 -265126.974006] SLOW spr round 12 (radius: 25) [05:25:37 -265126.974006] Model parameter optimization (eps = 0.100000) [05:25:43] ML tree search #7, logLikelihood: -265126.813846 [05:25:43 -768442.551603] Initial branch length optimization [05:25:45 -670551.167773] Model parameter optimization (eps = 10.000000) [05:26:03 -668795.628255] AUTODETECT spr round 1 (radius: 5) [05:27:27 -514456.203393] AUTODETECT spr round 2 (radius: 10) [05:29:05 -372898.656417] AUTODETECT spr round 3 (radius: 15) [05:30:47 -320428.735977] AUTODETECT spr round 4 (radius: 20) [05:32:55 -305869.980314] AUTODETECT spr round 5 (radius: 25) [05:36:08 -303564.449096] SPR radius for FAST iterations: 25 (autodetect) [05:36:08 -303564.449096] Model parameter optimization (eps = 3.000000) [05:36:27 -303253.652233] FAST spr round 1 (radius: 25) [05:38:48 -266497.239224] FAST spr round 2 (radius: 25) [05:40:45 -265394.904125] FAST spr round 3 (radius: 25) [05:42:21 -265275.171001] FAST spr round 4 (radius: 25) [05:43:51 -265264.530678] FAST spr round 5 (radius: 25) [05:45:24 -265263.683570] FAST spr round 6 (radius: 25) [05:46:52 -265263.683550] Model parameter optimization (eps = 1.000000) [05:47:08 -265237.575821] SLOW spr round 1 (radius: 5) [05:49:03 -265163.860623] SLOW spr round 2 (radius: 5) [05:51:01 -265154.842336] SLOW spr round 3 (radius: 5) [05:52:52 -265154.842333] SLOW spr round 4 (radius: 10) [05:54:42 -265154.842333] SLOW spr round 5 (radius: 15) [05:57:52 -265154.842333] SLOW spr round 6 (radius: 20) [06:02:12 -265154.842333] SLOW spr round 7 (radius: 25) [06:07:16 -265154.842333] Model parameter optimization (eps = 0.100000) [06:07:24] ML tree search #8, logLikelihood: -265154.581186 [06:07:24 -768907.785492] Initial branch length optimization [06:07:26 -672507.936978] Model parameter optimization (eps = 10.000000) [06:07:49 -670779.374403] AUTODETECT spr round 1 (radius: 5) [06:09:35 -514114.485400] AUTODETECT spr round 2 (radius: 10) [06:11:40 -376450.051251] AUTODETECT spr round 3 (radius: 15) [06:13:46 -323211.957008] AUTODETECT spr round 4 (radius: 20) [06:16:10 -300145.678733] AUTODETECT spr round 5 (radius: 25) [06:19:05 -299126.184799] SPR radius for FAST iterations: 25 (autodetect) [06:19:05 -299126.184799] Model parameter optimization (eps = 3.000000) [06:19:23 -298770.074748] FAST spr round 1 (radius: 25) [06:21:42 -266589.234508] FAST spr round 2 (radius: 25) [06:23:35 -265307.580849] FAST spr round 3 (radius: 25) [06:25:18 -265253.970241] FAST spr round 4 (radius: 25) [06:26:49 -265244.937136] FAST spr round 5 (radius: 25) [06:28:16 -265244.937114] Model parameter optimization (eps = 1.000000) [06:28:30 -265225.858690] SLOW spr round 1 (radius: 5) [06:30:33 -265152.286776] SLOW spr round 2 (radius: 5) [06:32:23 -265145.531391] SLOW spr round 3 (radius: 5) [06:34:11 -265145.531378] SLOW spr round 4 (radius: 10) [06:36:03 -265145.215308] SLOW spr round 5 (radius: 5) [06:38:14 -265145.215301] SLOW spr round 6 (radius: 10) [06:40:15 -265145.187384] SLOW spr round 7 (radius: 15) [06:43:04 -265145.187375] SLOW spr round 8 (radius: 20) [06:47:30 -265145.187375] SLOW spr round 9 (radius: 25) [06:52:55 -265145.187375] Model parameter optimization (eps = 0.100000) [06:53:01] ML tree search #9, logLikelihood: -265145.142022 [06:53:01 -770945.510485] Initial branch length optimization [06:53:03 -670055.757388] Model parameter optimization (eps = 10.000000) [06:53:30 -668439.012686] AUTODETECT spr round 1 (radius: 5) [06:55:16 -517471.513751] AUTODETECT spr round 2 (radius: 10) [06:57:18 -378449.402315] AUTODETECT spr round 3 (radius: 15) [06:59:30 -311819.579311] AUTODETECT spr round 4 (radius: 20) [07:02:12 -298548.940270] AUTODETECT spr round 5 (radius: 25) [07:05:24 -298104.912918] SPR radius for FAST iterations: 25 (autodetect) [07:05:24 -298104.912918] Model parameter optimization (eps = 3.000000) [07:05:43 -297773.059337] FAST spr round 1 (radius: 25) [07:08:01 -266153.354456] FAST spr round 2 (radius: 25) [07:09:49 -265289.793030] FAST spr round 3 (radius: 25) [07:11:30 -265218.306560] FAST spr round 4 (radius: 25) [07:13:02 -265203.251766] FAST spr round 5 (radius: 25) [07:14:29 -265203.230439] Model parameter optimization (eps = 1.000000) [07:14:42 -265199.734883] SLOW spr round 1 (radius: 5) [07:16:45 -265144.982440] SLOW spr round 2 (radius: 5) [07:18:36 -265141.962142] SLOW spr round 3 (radius: 5) [07:20:24 -265141.962097] SLOW spr round 4 (radius: 10) [07:22:13 -265141.514998] SLOW spr round 5 (radius: 5) [07:24:25 -265141.514988] SLOW spr round 6 (radius: 10) [07:26:27 -265141.514988] SLOW spr round 7 (radius: 15) [07:29:16 -265141.514988] SLOW spr round 8 (radius: 20) [07:33:37 -265141.514988] SLOW spr round 9 (radius: 25) [07:39:01 -265141.514988] Model parameter optimization (eps = 0.100000) [07:39:05] ML tree search #10, logLikelihood: -265141.446942 [07:39:06 -773064.782361] Initial branch length optimization [07:39:08 -673533.441903] Model parameter optimization (eps = 10.000000) [07:39:31 -671811.905354] AUTODETECT spr round 1 (radius: 5) [07:41:19 -513806.447794] AUTODETECT spr round 2 (radius: 10) [07:43:27 -372221.897785] AUTODETECT spr round 3 (radius: 15) [07:45:35 -309534.679057] AUTODETECT spr round 4 (radius: 20) [07:48:14 -298767.451395] AUTODETECT spr round 5 (radius: 25) [07:51:12 -298230.868155] SPR radius for FAST iterations: 25 (autodetect) [07:51:12 -298230.868155] Model parameter optimization (eps = 3.000000) [07:51:30 -297897.777019] FAST spr round 1 (radius: 25) [07:53:44 -266169.890305] FAST spr round 2 (radius: 25) [07:55:33 -265311.180079] FAST spr round 3 (radius: 25) [07:57:15 -265227.526971] FAST spr round 4 (radius: 25) [07:58:46 -265217.110612] FAST spr round 5 (radius: 25) [08:00:13 -265217.110607] Model parameter optimization (eps = 1.000000) [08:00:26 -265192.535881] SLOW spr round 1 (radius: 5) [08:02:26 -265144.973854] SLOW spr round 2 (radius: 5) [08:04:19 -265130.474736] SLOW spr round 3 (radius: 5) [08:06:09 -265128.720510] SLOW spr round 4 (radius: 5) [08:07:55 -265128.720462] SLOW spr round 5 (radius: 10) [08:09:46 -265128.028120] SLOW spr round 6 (radius: 5) [08:11:57 -265128.028099] SLOW spr round 7 (radius: 10) [08:14:01 -265128.028099] SLOW spr round 8 (radius: 15) [08:16:49 -265125.530546] SLOW spr round 9 (radius: 5) [08:19:06 -265123.582005] SLOW spr round 10 (radius: 5) [08:21:06 -265123.581994] SLOW spr round 11 (radius: 10) [08:23:03 -265123.581994] SLOW spr round 12 (radius: 15) [08:25:55 -265123.581994] SLOW spr round 13 (radius: 20) [08:30:16 -265123.581994] SLOW spr round 14 (radius: 25) [08:35:36 -265123.581994] Model parameter optimization (eps = 0.100000) [08:35:43] ML tree search #11, logLikelihood: -265123.481337 [08:35:43 -767895.644303] Initial branch length optimization [08:35:46 -670612.820898] Model parameter optimization (eps = 10.000000) [08:36:08 -668875.412921] AUTODETECT spr round 1 (radius: 5) [08:37:54 -511188.483610] AUTODETECT spr round 2 (radius: 10) [08:39:56 -373454.377572] AUTODETECT spr round 3 (radius: 15) [08:42:05 -316503.452110] AUTODETECT spr round 4 (radius: 20) [08:44:38 -298746.005591] AUTODETECT spr round 5 (radius: 25) [08:47:57 -297218.925682] SPR radius for FAST iterations: 25 (autodetect) [08:47:57 -297218.925682] Model parameter optimization (eps = 3.000000) [08:48:15 -296999.576589] FAST spr round 1 (radius: 25) [08:50:30 -266364.316358] FAST spr round 2 (radius: 25) [08:52:18 -265311.259025] FAST spr round 3 (radius: 25) [08:54:00 -265237.868583] FAST spr round 4 (radius: 25) [08:55:32 -265220.399667] FAST spr round 5 (radius: 25) [08:57:02 -265216.341268] FAST spr round 6 (radius: 25) [08:58:27 -265216.341264] Model parameter optimization (eps = 1.000000) [08:58:42 -265193.777477] SLOW spr round 1 (radius: 5) [09:00:40 -265138.688837] SLOW spr round 2 (radius: 5) [09:02:26 -265136.193757] SLOW spr round 3 (radius: 5) [09:04:13 -265136.193747] SLOW spr round 4 (radius: 10) [09:06:04 -265135.397735] SLOW spr round 5 (radius: 5) [09:08:16 -265135.397716] SLOW spr round 6 (radius: 10) [09:10:20 -265135.397716] SLOW spr round 7 (radius: 15) [09:13:06 -265135.397716] SLOW spr round 8 (radius: 20) [09:17:31 -265135.397716] SLOW spr round 9 (radius: 25) [09:22:56 -265135.397716] Model parameter optimization (eps = 0.100000) [09:23:06] ML tree search #12, logLikelihood: -265135.172199 [09:23:06 -770595.819509] Initial branch length optimization [09:23:09 -671762.517765] Model parameter optimization (eps = 10.000000) [09:23:32 -670070.329531] AUTODETECT spr round 1 (radius: 5) [09:25:17 -512314.884974] AUTODETECT spr round 2 (radius: 10) [09:27:18 -378411.322040] AUTODETECT spr round 3 (radius: 15) [09:29:33 -324362.487273] AUTODETECT spr round 4 (radius: 20) [09:32:15 -307424.802908] AUTODETECT spr round 5 (radius: 25) [09:34:58 -304524.224333] SPR radius for FAST iterations: 25 (autodetect) [09:34:58 -304524.224333] Model parameter optimization (eps = 3.000000) [09:35:15 -304257.913882] FAST spr round 1 (radius: 25) [09:37:33 -266470.857835] FAST spr round 2 (radius: 25) [09:39:20 -265378.467779] FAST spr round 3 (radius: 25) [09:41:01 -265303.972584] FAST spr round 4 (radius: 25) [09:42:32 -265293.765820] FAST spr round 5 (radius: 25) [09:44:01 -265286.305670] FAST spr round 6 (radius: 25) [09:45:27 -265282.779627] FAST spr round 7 (radius: 25) [09:46:52 -265282.779506] Model parameter optimization (eps = 1.000000) [09:47:09 -265252.469497] SLOW spr round 1 (radius: 5) [09:49:04 -265168.643906] SLOW spr round 2 (radius: 5) [09:50:53 -265166.356896] SLOW spr round 3 (radius: 5) [09:52:43 -265160.004283] SLOW spr round 4 (radius: 5) [09:54:30 -265156.519283] SLOW spr round 5 (radius: 5) [09:56:16 -265156.519283] SLOW spr round 6 (radius: 10) [09:58:05 -265154.412694] SLOW spr round 7 (radius: 5) [10:00:17 -265152.506339] SLOW spr round 8 (radius: 5) [10:02:16 -265151.904785] SLOW spr round 9 (radius: 5) [10:04:07 -265151.904771] SLOW spr round 10 (radius: 10) [10:05:59 -265151.904771] SLOW spr round 11 (radius: 15) [10:09:03 -265151.904771] SLOW spr round 12 (radius: 20) [10:13:40 -265151.904771] SLOW spr round 13 (radius: 25) [10:19:28 -265151.904771] Model parameter optimization (eps = 0.100000) [10:19:33] ML tree search #13, logLikelihood: -265151.860832 [10:19:33 -773163.772907] Initial branch length optimization [10:19:35 -673065.170873] Model parameter optimization (eps = 10.000000) [10:20:01 -671332.120252] AUTODETECT spr round 1 (radius: 5) [10:21:47 -511695.408683] AUTODETECT spr round 2 (radius: 10) [10:23:51 -374635.698657] AUTODETECT spr round 3 (radius: 15) [10:25:57 -322311.069973] AUTODETECT spr round 4 (radius: 20) [10:28:22 -306597.025128] AUTODETECT spr round 5 (radius: 25) [10:31:15 -302296.132816] SPR radius for FAST iterations: 25 (autodetect) [10:31:15 -302296.132816] Model parameter optimization (eps = 3.000000) [10:31:33 -301975.683986] FAST spr round 1 (radius: 25) [10:33:53 -266397.745340] FAST spr round 2 (radius: 25) [10:35:42 -265388.251677] FAST spr round 3 (radius: 25) [10:37:22 -265259.749290] FAST spr round 4 (radius: 25) [10:38:53 -265243.476345] FAST spr round 5 (radius: 25) [10:40:21 -265237.149011] FAST spr round 6 (radius: 25) [10:41:47 -265237.149010] Model parameter optimization (eps = 1.000000) [10:42:02 -265208.346466] SLOW spr round 1 (radius: 5) [10:44:01 -265147.154236] SLOW spr round 2 (radius: 5) [10:45:52 -265144.349037] SLOW spr round 3 (radius: 5) [10:47:38 -265143.096423] SLOW spr round 4 (radius: 5) [10:49:26 -265143.096421] SLOW spr round 5 (radius: 10) [10:51:16 -265140.421790] SLOW spr round 6 (radius: 5) [10:53:31 -265136.809640] SLOW spr round 7 (radius: 5) [10:55:27 -265136.809626] SLOW spr round 8 (radius: 10) [10:57:21 -265136.809626] SLOW spr round 9 (radius: 15) [11:00:17 -265136.809626] SLOW spr round 10 (radius: 20) [11:04:46 -265136.809626] SLOW spr round 11 (radius: 25) [11:10:19 -265136.809626] Model parameter optimization (eps = 0.100000) [11:10:27] ML tree search #14, logLikelihood: -265136.649908 [11:10:27 -768708.903586] Initial branch length optimization [11:10:29 -670382.170074] Model parameter optimization (eps = 10.000000) [11:10:52 -668614.049640] AUTODETECT spr round 1 (radius: 5) [11:12:39 -520491.592208] AUTODETECT spr round 2 (radius: 10) [11:14:43 -387025.816115] AUTODETECT spr round 3 (radius: 15) [11:16:55 -318198.797598] AUTODETECT spr round 4 (radius: 20) [11:19:45 -300603.019707] AUTODETECT spr round 5 (radius: 25) [11:22:45 -299058.527114] SPR radius for FAST iterations: 25 (autodetect) [11:22:45 -299058.527114] Model parameter optimization (eps = 3.000000) [11:23:01 -298805.793280] FAST spr round 1 (radius: 25) [11:25:14 -266293.050659] FAST spr round 2 (radius: 25) [11:27:02 -265301.216719] FAST spr round 3 (radius: 25) [11:28:44 -265242.956385] FAST spr round 4 (radius: 25) [11:30:14 -265229.028936] FAST spr round 5 (radius: 25) [11:31:40 -265229.028935] Model parameter optimization (eps = 1.000000) [11:31:53 -265206.016261] SLOW spr round 1 (radius: 5) [11:33:52 -265133.359015] SLOW spr round 2 (radius: 5) [11:35:44 -265128.775077] SLOW spr round 3 (radius: 5) [11:37:32 -265128.775022] SLOW spr round 4 (radius: 10) [11:39:23 -265125.637216] SLOW spr round 5 (radius: 5) [11:41:34 -265124.721276] SLOW spr round 6 (radius: 5) [11:43:30 -265124.721265] SLOW spr round 7 (radius: 10) [11:45:26 -265124.721265] SLOW spr round 8 (radius: 15) [11:48:22 -265124.721265] SLOW spr round 9 (radius: 20) [11:52:45 -265124.721265] SLOW spr round 10 (radius: 25) [11:58:06 -265124.721265] Model parameter optimization (eps = 0.100000) [11:58:14] ML tree search #15, logLikelihood: -265124.618327 [11:58:14 -769417.736274] Initial branch length optimization [11:58:16 -670560.136165] Model parameter optimization (eps = 10.000000) [11:58:38 -668800.426432] AUTODETECT spr round 1 (radius: 5) [12:00:03 -508746.354685] AUTODETECT spr round 2 (radius: 10) [12:01:43 -367596.123805] AUTODETECT spr round 3 (radius: 15) [12:03:53 -311184.872896] AUTODETECT spr round 4 (radius: 20) [12:06:26 -300037.858549] AUTODETECT spr round 5 (radius: 25) [12:09:15 -299726.664135] SPR radius for FAST iterations: 25 (autodetect) [12:09:15 -299726.664135] Model parameter optimization (eps = 3.000000) [12:09:36 -299438.697615] FAST spr round 1 (radius: 25) [12:11:58 -266477.227065] FAST spr round 2 (radius: 25) [12:13:49 -265446.925017] FAST spr round 3 (radius: 25) [12:15:29 -265291.710099] FAST spr round 4 (radius: 25) [12:17:04 -265277.137248] FAST spr round 5 (radius: 25) [12:18:35 -265277.116671] Model parameter optimization (eps = 1.000000) [12:18:50 -265248.569233] SLOW spr round 1 (radius: 5) [12:20:52 -265173.074228] SLOW spr round 2 (radius: 5) [12:22:49 -265134.905307] SLOW spr round 3 (radius: 5) [12:24:39 -265126.653907] SLOW spr round 4 (radius: 5) [12:26:24 -265125.534654] SLOW spr round 5 (radius: 5) [12:28:14 -265125.534650] SLOW spr round 6 (radius: 10) [12:30:10 -265123.424401] SLOW spr round 7 (radius: 5) [12:32:22 -265123.424381] SLOW spr round 8 (radius: 10) [12:34:24 -265123.424381] SLOW spr round 9 (radius: 15) [12:37:15 -265123.424381] SLOW spr round 10 (radius: 20) [12:41:43 -265123.424381] SLOW spr round 11 (radius: 25) [12:46:59 -265123.424381] Model parameter optimization (eps = 0.100000) [12:47:08] ML tree search #16, logLikelihood: -265123.230294 [12:47:08 -773554.154217] Initial branch length optimization [12:47:10 -674981.075303] Model parameter optimization (eps = 10.000000) [12:47:38 -673247.959628] AUTODETECT spr round 1 (radius: 5) [12:49:27 -503418.386212] AUTODETECT spr round 2 (radius: 10) [12:51:32 -366730.506817] AUTODETECT spr round 3 (radius: 15) [12:53:42 -309055.909061] AUTODETECT spr round 4 (radius: 20) [12:56:26 -300551.712089] AUTODETECT spr round 5 (radius: 25) [12:59:26 -299616.574284] SPR radius for FAST iterations: 25 (autodetect) [12:59:26 -299616.574284] Model parameter optimization (eps = 3.000000) [12:59:43 -299323.335886] FAST spr round 1 (radius: 25) [13:01:57 -266356.543084] FAST spr round 2 (radius: 25) [13:03:46 -265332.882219] FAST spr round 3 (radius: 25) [13:05:30 -265258.063685] FAST spr round 4 (radius: 25) [13:07:06 -265238.121739] FAST spr round 5 (radius: 25) [13:08:33 -265238.121737] Model parameter optimization (eps = 1.000000) [13:08:45 -265223.814186] SLOW spr round 1 (radius: 5) [13:10:45 -265181.996089] SLOW spr round 2 (radius: 5) [13:12:39 -265176.002924] SLOW spr round 3 (radius: 5) [13:14:29 -265176.002922] SLOW spr round 4 (radius: 10) [13:16:22 -265169.251901] SLOW spr round 5 (radius: 5) [13:18:34 -265165.475229] SLOW spr round 6 (radius: 5) [13:20:32 -265159.535913] SLOW spr round 7 (radius: 5) [13:22:25 -265159.535853] SLOW spr round 8 (radius: 10) [13:24:21 -265154.557403] SLOW spr round 9 (radius: 5) [13:26:31 -265152.649450] SLOW spr round 10 (radius: 5) [13:28:27 -265152.434798] SLOW spr round 11 (radius: 5) [13:30:20 -265152.434793] SLOW spr round 12 (radius: 10) [13:32:15 -265149.163537] SLOW spr round 13 (radius: 5) [13:34:28 -265142.868447] SLOW spr round 14 (radius: 5) [13:36:24 -265142.668740] SLOW spr round 15 (radius: 5) [13:38:16 -265142.668711] SLOW spr round 16 (radius: 10) [13:40:11 -265142.668711] SLOW spr round 17 (radius: 15) [13:43:17 -265142.668711] SLOW spr round 18 (radius: 20) [13:47:57 -265142.668711] SLOW spr round 19 (radius: 25) [13:53:50 -265142.668711] Model parameter optimization (eps = 0.100000) [13:54:01] ML tree search #17, logLikelihood: -265142.463773 [13:54:01 -772191.871431] Initial branch length optimization [13:54:03 -673654.168293] Model parameter optimization (eps = 10.000000) [13:54:30 -671957.065501] AUTODETECT spr round 1 (radius: 5) [13:56:19 -516915.711650] AUTODETECT spr round 2 (radius: 10) [13:58:25 -370341.174462] AUTODETECT spr round 3 (radius: 15) [14:00:35 -310080.849359] AUTODETECT spr round 4 (radius: 20) [14:03:01 -300963.518972] AUTODETECT spr round 5 (radius: 25) [14:06:23 -298768.361099] SPR radius for FAST iterations: 25 (autodetect) [14:06:23 -298768.361099] Model parameter optimization (eps = 3.000000) [14:06:42 -298439.221703] FAST spr round 1 (radius: 25) [14:09:02 -266173.314680] FAST spr round 2 (radius: 25) [14:10:51 -265286.953807] FAST spr round 3 (radius: 25) [14:12:32 -265229.664350] FAST spr round 4 (radius: 25) [14:14:05 -265217.949801] FAST spr round 5 (radius: 25) [14:15:35 -265217.949783] Model parameter optimization (eps = 1.000000) [14:15:50 -265193.496452] SLOW spr round 1 (radius: 5) [14:17:52 -265129.993058] SLOW spr round 2 (radius: 5) [14:19:41 -265128.295788] SLOW spr round 3 (radius: 5) [14:21:30 -265128.295782] SLOW spr round 4 (radius: 10) [14:23:24 -265127.679865] SLOW spr round 5 (radius: 5) [14:25:36 -265127.679860] SLOW spr round 6 (radius: 10) [14:27:40 -265127.679860] SLOW spr round 7 (radius: 15) [14:30:33 -265125.003527] SLOW spr round 8 (radius: 5) [14:32:53 -265125.003509] SLOW spr round 9 (radius: 10) [14:35:03 -265125.003509] SLOW spr round 10 (radius: 15) [14:37:54 -265125.003509] SLOW spr round 11 (radius: 20) [14:42:33 -265125.003509] SLOW spr round 12 (radius: 25) [14:48:07 -265125.003509] Model parameter optimization (eps = 0.100000) [14:48:18] ML tree search #18, logLikelihood: -265124.874259 [14:48:19 -770916.567726] Initial branch length optimization [14:48:21 -672446.953546] Model parameter optimization (eps = 10.000000) [14:48:44 -670722.902064] AUTODETECT spr round 1 (radius: 5) [14:50:33 -512568.619979] AUTODETECT spr round 2 (radius: 10) [14:52:38 -372219.580559] AUTODETECT spr round 3 (radius: 15) [14:54:41 -321739.062526] AUTODETECT spr round 4 (radius: 20) [14:57:17 -303960.064221] AUTODETECT spr round 5 (radius: 25) [15:00:25 -301090.288977] SPR radius for FAST iterations: 25 (autodetect) [15:00:25 -301090.288977] Model parameter optimization (eps = 3.000000) [15:00:42 -300819.418883] FAST spr round 1 (radius: 25) [15:02:57 -266343.090957] FAST spr round 2 (radius: 25) [15:04:47 -265359.479992] FAST spr round 3 (radius: 25) [15:06:31 -265270.994591] FAST spr round 4 (radius: 25) [15:08:02 -265250.117004] FAST spr round 5 (radius: 25) [15:09:28 -265246.022900] FAST spr round 6 (radius: 25) [15:10:57 -265227.200495] FAST spr round 7 (radius: 25) [15:12:25 -265227.200490] Model parameter optimization (eps = 1.000000) [15:12:45 -265217.333644] SLOW spr round 1 (radius: 5) [15:14:45 -265156.319817] SLOW spr round 2 (radius: 5) [15:16:36 -265150.345125] SLOW spr round 3 (radius: 5) [15:18:23 -265147.333531] SLOW spr round 4 (radius: 5) [15:20:11 -265147.333521] SLOW spr round 5 (radius: 10) [15:22:05 -265145.278310] SLOW spr round 6 (radius: 5) [15:24:20 -265140.890058] SLOW spr round 7 (radius: 5) [15:26:17 -265140.889955] SLOW spr round 8 (radius: 10) [15:28:12 -265140.889955] SLOW spr round 9 (radius: 15) [15:31:16 -265139.939318] SLOW spr round 10 (radius: 5) [15:33:33 -265137.981972] SLOW spr round 11 (radius: 5) [15:35:32 -265137.981952] SLOW spr round 12 (radius: 10) [15:37:30 -265137.307063] SLOW spr round 13 (radius: 5) [15:39:43 -265135.815068] SLOW spr round 14 (radius: 5) [15:41:40 -265135.815065] SLOW spr round 15 (radius: 10) [15:43:33 -265135.815065] SLOW spr round 16 (radius: 15) [15:46:34 -265135.815065] SLOW spr round 17 (radius: 20) [15:51:03 -265135.815065] SLOW spr round 18 (radius: 25) [15:56:40 -265135.815065] Model parameter optimization (eps = 0.100000) [15:56:52] ML tree search #19, logLikelihood: -265135.382188 [15:56:52 -772551.023051] Initial branch length optimization [15:56:54 -673472.919895] Model parameter optimization (eps = 10.000000) [15:57:19 -671796.602958] AUTODETECT spr round 1 (radius: 5) [15:59:05 -515458.876279] AUTODETECT spr round 2 (radius: 10) [16:01:11 -384522.708627] AUTODETECT spr round 3 (radius: 15) [16:03:20 -330060.080299] AUTODETECT spr round 4 (radius: 20) [16:05:46 -310732.162671] AUTODETECT spr round 5 (radius: 25) [16:08:30 -308497.637695] SPR radius for FAST iterations: 25 (autodetect) [16:08:30 -308497.637695] Model parameter optimization (eps = 3.000000) [16:08:47 -308118.018903] FAST spr round 1 (radius: 25) [16:11:10 -267024.097301] FAST spr round 2 (radius: 25) [16:13:00 -265408.804934] FAST spr round 3 (radius: 25) [16:14:44 -265270.197552] FAST spr round 4 (radius: 25) [16:16:18 -265236.943870] FAST spr round 5 (radius: 25) [16:17:53 -265218.633850] FAST spr round 6 (radius: 25) [16:19:21 -265218.633850] Model parameter optimization (eps = 1.000000) [16:19:37 -265200.968234] SLOW spr round 1 (radius: 5) [16:21:39 -265140.590950] SLOW spr round 2 (radius: 5) [16:23:30 -265135.450807] SLOW spr round 3 (radius: 5) [16:25:17 -265135.450774] SLOW spr round 4 (radius: 10) [16:27:11 -265135.450774] SLOW spr round 5 (radius: 15) [16:30:21 -265135.450774] SLOW spr round 6 (radius: 20) [16:34:57 -265135.450774] SLOW spr round 7 (radius: 25) [16:40:41 -265135.450774] Model parameter optimization (eps = 0.100000) [16:40:47] ML tree search #20, logLikelihood: -265135.405508 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.151034,0.481515) (0.238909,0.587429) (0.396912,1.027857) (0.213146,1.777960) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -265123.230294 AIC score: 534256.460588 / AICc score: 8578316.460588 / BIC score: 542649.808879 Free parameters (model + branch lengths): 2005 WARNING: Number of free parameters (K=2005) is larger than alignment size (n=486). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/3_mltree/P24903.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/3_mltree/P24903.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/3_mltree/P24903.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P24903/3_mltree/P24903.raxml.log Analysis started: 03-Jul-2021 04:25:56 / finished: 03-Jul-2021 21:06:44 Elapsed time: 60047.926 seconds Consumed energy: 4049.615 Wh (= 20 km in an electric car, or 101 km with an e-scooter!)