RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 07-Jul-2021 07:15:05 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/2_msa/P09488_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/3_mltree/P09488 --seed 2 --threads 4 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (4 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/2_msa/P09488_trimmed_msa.fasta [00:00:00] Loaded alignment with 542 taxa and 217 sites WARNING: Sequences tr_G2HFY3_G2HFY3_PANTR_9598 and tr_A0A2R8ZY73_A0A2R8ZY73_PANPA_9597 are exactly identical! WARNING: Sequences tr_H2RDF8_H2RDF8_PANTR_9598 and tr_A0A2R9BAV5_A0A2R9BAV5_PANPA_9597 are exactly identical! WARNING: Sequences tr_F7H5D7_F7H5D7_MACMU_9544 and tr_Q2PFL7_Q2PFL7_MACFA_9541 are exactly identical! WARNING: Sequences tr_F7H5D7_F7H5D7_MACMU_9544 and tr_A0A2K6E831_A0A2K6E831_MACNE_9545 are exactly identical! WARNING: Sequences tr_A8X357_A8X357_CAEBR_6238 and tr_A0A2G5SFE9_A0A2G5SFE9_9PELO_1611254 are exactly identical! WARNING: Sequences sp_P46427_GSTP_ONCVO_6282 and tr_A0A182DXG4_A0A182DXG4_ONCOC_42157 are exactly identical! WARNING: Sequences tr_A0A2I3MSP2_A0A2I3MSP2_PAPAN_9555 and tr_A0A0D9S6I2_A0A0D9S6I2_CHLSB_60711 are exactly identical! WARNING: Sequences tr_A0A2I3MSP2_A0A2I3MSP2_PAPAN_9555 and tr_A0A2K5NGY0_A0A2K5NGY0_CERAT_9531 are exactly identical! WARNING: Sequences tr_A0A0R3WH91_A0A0R3WH91_TAEAS_60517 and tr_A0A0R3WHA3_A0A0R3WHA3_TAEAS_60517 are exactly identical! WARNING: Sequences tr_A0A1D1VYH0_A0A1D1VYH0_RAMVA_947166 and tr_A0A1D1VZS8_A0A1D1VZS8_RAMVA_947166 are exactly identical! WARNING: Sequences tr_A0A1U7Q2C9_A0A1U7Q2C9_MESAU_10036 and sp_P30116_GSTMU_MESAU_10036 are exactly identical! WARNING: Sequences tr_A0A1U7Q833_A0A1U7Q833_MESAU_10036 and sp_Q60550_GSTP1_MESAU_10036 are exactly identical! WARNING: Duplicate sequences found: 12 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/3_mltree/P09488.raxml.reduced.phy Alignment comprises 1 partitions and 217 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 217 / 217 Gaps: 10.22 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/3_mltree/P09488.raxml.rba Parallelization scheme autoconfig: 4 worker(s) x 1 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 542 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 217 / 17360 [00:00:00] Data distribution: max. searches per worker: 5 Starting ML tree search with 20 distinct starting trees [00:00:00 -183129.357978] Initial branch length optimization [00:00:02 -149387.621041] Model parameter optimization (eps = 10.000000) [00:00:27 -148181.139460] AUTODETECT spr round 1 (radius: 5) [00:01:24 -129772.780765] AUTODETECT spr round 2 (radius: 10) [00:02:34 -112545.282000] AUTODETECT spr round 3 (radius: 15) [00:03:57 -100678.930364] AUTODETECT spr round 4 (radius: 20) [00:05:42 -93017.519222] AUTODETECT spr round 5 (radius: 25) [00:07:20 -92391.890303] SPR radius for FAST iterations: 25 (autodetect) [00:07:20 -92391.890303] Model parameter optimization (eps = 3.000000) [00:07:36 -92300.807147] FAST spr round 1 (radius: 25) [00:09:16 -83161.547992] FAST spr round 2 (radius: 25) [00:10:25 -82689.094810] FAST spr round 3 (radius: 25) [00:11:25 -82649.773836] FAST spr round 4 (radius: 25) [00:12:15 -82642.585359] FAST spr round 5 (radius: 25) [00:13:01 -82642.584905] Model parameter optimization (eps = 1.000000) [00:13:11 -82630.750305] SLOW spr round 1 (radius: 5) [00:14:30 -82621.950148] SLOW spr round 2 (radius: 5) [00:15:38 -82621.909036] SLOW spr round 3 (radius: 10) [00:16:49 -82620.246454] SLOW spr round 4 (radius: 5) [00:18:18 -82618.781179] SLOW spr round 5 (radius: 5) [00:19:33 -82618.781142] SLOW spr round 6 (radius: 10) [00:20:46 -82618.781134] SLOW spr round 7 (radius: 15) [00:22:59 -82618.781127] SLOW spr round 8 (radius: 20) [00:25:33 -82618.781120] SLOW spr round 9 (radius: 25) [00:27:55] [worker #3] ML tree search #4, logLikelihood: -82633.328225 [00:28:38 -82618.781114] Model parameter optimization (eps = 0.100000) [00:28:45] [worker #0] ML tree search #1, logLikelihood: -82618.668872 [00:28:45 -182233.685812] Initial branch length optimization [00:28:46] [worker #1] ML tree search #2, logLikelihood: -82607.831422 [00:28:47 -149191.314943] Model parameter optimization (eps = 10.000000) [00:29:19 -147998.653895] AUTODETECT spr round 1 (radius: 5) [00:29:58] [worker #2] ML tree search #3, logLikelihood: -82653.359087 [00:30:14 -129322.378235] AUTODETECT spr round 2 (radius: 10) [00:31:20 -110994.741849] AUTODETECT spr round 3 (radius: 15) [00:32:45 -96975.319306] AUTODETECT spr round 4 (radius: 20) [00:34:18 -92394.349265] AUTODETECT spr round 5 (radius: 25) [00:35:55 -91966.725629] SPR radius for FAST iterations: 25 (autodetect) [00:35:55 -91966.725629] Model parameter optimization (eps = 3.000000) [00:36:09 -91901.916595] FAST spr round 1 (radius: 25) [00:37:37 -83098.776563] FAST spr round 2 (radius: 25) [00:38:44 -82722.839448] FAST spr round 3 (radius: 25) [00:39:40 -82670.447301] FAST spr round 4 (radius: 25) [00:40:28 -82667.476346] FAST spr round 5 (radius: 25) [00:41:13 -82667.476145] Model parameter optimization (eps = 1.000000) [00:41:25 -82654.701951] SLOW spr round 1 (radius: 5) [00:42:43 -82621.877822] SLOW spr round 2 (radius: 5) [00:43:52 -82621.874868] SLOW spr round 3 (radius: 10) [00:45:04 -82618.748011] SLOW spr round 4 (radius: 5) [00:46:35 -82617.585911] SLOW spr round 5 (radius: 5) [00:47:50 -82617.585870] SLOW spr round 6 (radius: 10) [00:49:05 -82617.585842] SLOW spr round 7 (radius: 15) [00:51:20 -82617.585817] SLOW spr round 8 (radius: 20) [00:53:59 -82617.585793] SLOW spr round 9 (radius: 25) [00:54:13] [worker #1] ML tree search #6, logLikelihood: -82632.837172 [00:57:07 -82617.585772] Model parameter optimization (eps = 0.100000) [00:57:10] [worker #0] ML tree search #5, logLikelihood: -82617.558617 [00:57:10 -183747.645720] Initial branch length optimization [00:57:12 -149339.600136] Model parameter optimization (eps = 10.000000) [00:57:40 -148217.241916] AUTODETECT spr round 1 (radius: 5) [00:58:37 -128831.393170] AUTODETECT spr round 2 (radius: 10) [00:59:47 -112248.917490] AUTODETECT spr round 3 (radius: 15) [01:01:09 -103289.716494] AUTODETECT spr round 4 (radius: 20) [01:02:55 -92230.702772] AUTODETECT spr round 5 (radius: 25) [01:04:38 -90956.452991] SPR radius for FAST iterations: 25 (autodetect) [01:04:38 -90956.452991] Model parameter optimization (eps = 3.000000) [01:04:55 -90858.534549] FAST spr round 1 (radius: 25) [01:05:53] [worker #3] ML tree search #8, logLikelihood: -82612.032711 [01:06:32 -83218.958291] FAST spr round 2 (radius: 25) [01:06:44] [worker #2] ML tree search #7, logLikelihood: -82598.659274 [01:07:44 -82693.073844] FAST spr round 3 (radius: 25) [01:08:39 -82678.779996] FAST spr round 4 (radius: 25) [01:09:29 -82674.786207] FAST spr round 5 (radius: 25) [01:10:16 -82674.785621] Model parameter optimization (eps = 1.000000) [01:10:27 -82665.456061] SLOW spr round 1 (radius: 5) [01:11:49 -82642.423850] SLOW spr round 2 (radius: 5) [01:13:03 -82633.395918] SLOW spr round 3 (radius: 5) [01:14:13 -82632.978385] SLOW spr round 4 (radius: 5) [01:15:21 -82632.978253] SLOW spr round 5 (radius: 10) [01:16:31 -82632.978144] SLOW spr round 6 (radius: 15) [01:18:51 -82630.480411] SLOW spr round 7 (radius: 5) [01:20:27 -82626.089703] SLOW spr round 8 (radius: 5) [01:21:47 -82625.792482] SLOW spr round 9 (radius: 5) [01:22:59 -82625.792431] SLOW spr round 10 (radius: 10) [01:24:11 -82625.792425] SLOW spr round 11 (radius: 15) [01:24:41] [worker #1] ML tree search #10, logLikelihood: -82619.879560 [01:26:30 -82625.792420] SLOW spr round 12 (radius: 20) [01:29:12 -82625.792416] SLOW spr round 13 (radius: 25) [01:32:10 -82625.792411] Model parameter optimization (eps = 0.100000) [01:32:18] [worker #0] ML tree search #9, logLikelihood: -82623.801134 [01:32:18 -183400.921488] Initial branch length optimization [01:32:20 -149969.916892] Model parameter optimization (eps = 10.000000) [01:32:42 -148786.274996] AUTODETECT spr round 1 (radius: 5) [01:33:38 -128563.546965] AUTODETECT spr round 2 (radius: 10) [01:34:47 -111641.159146] AUTODETECT spr round 3 (radius: 15) [01:36:08 -103520.124800] AUTODETECT spr round 4 (radius: 20) [01:36:30] [worker #2] ML tree search #11, logLikelihood: -82621.226659 [01:37:45 -98455.200488] AUTODETECT spr round 5 (radius: 25) [01:39:39] [worker #3] ML tree search #12, logLikelihood: -82628.347272 [01:39:39 -94487.773666] SPR radius for FAST iterations: 25 (autodetect) [01:39:39 -94487.773666] Model parameter optimization (eps = 3.000000) [01:39:58 -94412.382318] FAST spr round 1 (radius: 25) [01:41:34 -83325.468536] FAST spr round 2 (radius: 25) [01:42:42 -82819.091650] FAST spr round 3 (radius: 25) [01:43:40 -82719.737924] FAST spr round 4 (radius: 25) [01:44:29 -82701.654948] FAST spr round 5 (radius: 25) [01:45:14 -82701.654592] Model parameter optimization (eps = 1.000000) [01:45:27 -82688.551992] SLOW spr round 1 (radius: 5) [01:46:41 -82669.144144] SLOW spr round 2 (radius: 5) [01:47:52 -82662.596878] SLOW spr round 3 (radius: 5) [01:48:59 -82662.319045] SLOW spr round 4 (radius: 5) [01:50:03 -82662.318773] SLOW spr round 5 (radius: 10) [01:51:15 -82650.015488] SLOW spr round 6 (radius: 5) [01:52:46 -82630.089484] SLOW spr round 7 (radius: 5) [01:52:53] [worker #1] ML tree search #14, logLikelihood: -82634.126772 [01:54:03 -82629.647505] SLOW spr round 8 (radius: 5) [01:55:13 -82629.647172] SLOW spr round 9 (radius: 10) [01:56:24 -82629.556852] SLOW spr round 10 (radius: 15) [01:58:47 -82629.556800] SLOW spr round 11 (radius: 20) [02:01:20 -82629.556752] SLOW spr round 12 (radius: 25) [02:04:13 -82628.399918] SLOW spr round 13 (radius: 5) [02:05:15] [worker #2] ML tree search #15, logLikelihood: -82610.165133 [02:05:47 -82628.399874] SLOW spr round 14 (radius: 10) [02:07:20 -82628.399836] SLOW spr round 15 (radius: 15) [02:07:21] [worker #3] ML tree search #16, logLikelihood: -82611.059651 [02:09:27 -82628.399802] SLOW spr round 16 (radius: 20) [02:12:01 -82628.399770] SLOW spr round 17 (radius: 25) [02:14:55 -82628.399740] Model parameter optimization (eps = 0.100000) [02:15:08] [worker #0] ML tree search #13, logLikelihood: -82628.264841 [02:15:08 -183574.618833] Initial branch length optimization [02:15:09 -149338.835670] Model parameter optimization (eps = 10.000000) [02:15:43 -148196.485820] AUTODETECT spr round 1 (radius: 5) [02:16:40 -129882.700799] AUTODETECT spr round 2 (radius: 10) [02:17:53 -109940.452931] AUTODETECT spr round 3 (radius: 15) [02:19:24 -99015.479005] AUTODETECT spr round 4 (radius: 20) [02:21:22 -91930.974870] AUTODETECT spr round 5 (radius: 25) [02:23:37 -90592.522464] SPR radius for FAST iterations: 25 (autodetect) [02:23:37 -90592.522464] Model parameter optimization (eps = 3.000000) [02:23:53 -90532.228857] FAST spr round 1 (radius: 25) [02:25:31 -82950.243063] FAST spr round 2 (radius: 25) [02:26:38 -82704.670260] FAST spr round 3 (radius: 25) [02:27:39 -82658.841483] FAST spr round 4 (radius: 25) [02:28:30 -82654.928704] FAST spr round 5 (radius: 25) [02:29:17 -82654.675957] FAST spr round 6 (radius: 25) [02:30:03 -82654.675586] Model parameter optimization (eps = 1.000000) [02:30:14 -82643.650945] SLOW spr round 1 (radius: 5) [02:31:32 -82634.870846] SLOW spr round 2 (radius: 5) [02:32:42 -82633.458237] SLOW spr round 3 (radius: 5) [02:33:50 -82633.455826] SLOW spr round 4 (radius: 10) [02:34:47] [worker #1] ML tree search #18, logLikelihood: -82620.014105 [02:35:00 -82633.455531] SLOW spr round 5 (radius: 15) [02:37:23 -82632.867972] SLOW spr round 6 (radius: 5) [02:38:56 -82632.489396] SLOW spr round 7 (radius: 5) [02:40:14 -82630.325508] SLOW spr round 8 (radius: 5) [02:41:25 -82630.325467] SLOW spr round 9 (radius: 10) [02:42:28] [worker #3] ML tree search #20, logLikelihood: -82647.085487 [02:42:36 -82629.541636] SLOW spr round 10 (radius: 5) [02:44:08 -82619.737514] SLOW spr round 11 (radius: 5) [02:45:16] [worker #2] ML tree search #19, logLikelihood: -82621.452533 [02:45:29 -82610.215576] SLOW spr round 12 (radius: 5) [02:46:38 -82607.431783] SLOW spr round 13 (radius: 5) [02:47:44 -82607.431775] SLOW spr round 14 (radius: 10) [02:48:52 -82607.431771] SLOW spr round 15 (radius: 15) [02:51:13 -82607.431768] SLOW spr round 16 (radius: 20) [02:53:52 -82607.431765] SLOW spr round 17 (radius: 25) [02:57:12 -82607.431762] Model parameter optimization (eps = 0.100000) [02:57:16] [worker #0] ML tree search #17, logLikelihood: -82607.420345 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.139719,0.587803) (0.121136,0.976052) (0.370388,0.689605) (0.368758,1.475812) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -82598.659274 AIC score: 167371.318548 / AICc score: 2532683.318548 / BIC score: 171045.266971 Free parameters (model + branch lengths): 1087 WARNING: Number of free parameters (K=1087) is larger than alignment size (n=217). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/3_mltree/P09488.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/3_mltree/P09488.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/3_mltree/P09488.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/P09488/3_mltree/P09488.raxml.log Analysis started: 07-Jul-2021 07:15:05 / finished: 07-Jul-2021 10:12:22 Elapsed time: 10636.947 seconds Consumed energy: 915.281 Wh (= 5 km in an electric car, or 23 km with an e-scooter!)