RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz, 56 cores, 187 GB RAM RAxML-NG was called at 26-Jul-2021 00:10:21 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/2_msa/O00189_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/2_msa/O00189_trimmed_msa.fasta [00:00:00] Loaded alignment with 389 taxa and 483 sites WARNING: Sequences tr_A0A2I3SBC8_A0A2I3SBC8_PANTR_9598 and tr_A0A2R9CGR5_A0A2R9CGR5_PANPA_9597 are exactly identical! WARNING: Sequences tr_K7J0N4_K7J0N4_NASVI_7425 and tr_A0A158P3M2_A0A158P3M2_ATTCE_12957 are exactly identical! WARNING: Sequences tr_K7J0N4_K7J0N4_NASVI_7425 and tr_A0A0M8ZXP9_A0A0M8ZXP9_9HYME_166423 are exactly identical! WARNING: Sequences tr_K7J0N4_K7J0N4_NASVI_7425 and tr_A0A154NWD7_A0A154NWD7_9HYME_178035 are exactly identical! WARNING: Sequences tr_A0A0E0I443_A0A0E0I443_ORYNI_4536 and tr_A0A0E0QBD8_A0A0E0QBD8_ORYRU_4529 are exactly identical! WARNING: Sequences tr_A0A0E0I443_A0A0E0I443_ORYNI_4536 and tr_A0A0E0AMT2_A0A0E0AMT2_9ORYZ_40148 are exactly identical! WARNING: Sequences tr_I1QC96_I1QC96_ORYGL_4538 and tr_Q7XI39_Q7XI39_ORYSJ_39947 are exactly identical! WARNING: Sequences tr_W2PGE9_W2PGE9_PHYPN_761204 and tr_A0A0W8B0I0_A0A0W8B0I0_PHYNI_4790 are exactly identical! WARNING: Sequences tr_W2PGE9_W2PGE9_PHYPN_761204 and tr_W2JXY5_W2JXY5_PHYPR_4792 are exactly identical! WARNING: Sequences tr_W2PGE9_W2PGE9_PHYPN_761204 and tr_A0A329ST27_A0A329ST27_9STRA_29920 are exactly identical! WARNING: Sequences tr_A0A067H0R9_A0A067H0R9_CITSI_2711 and tr_V4TBS4_V4TBS4_9ROSI_85681 are exactly identical! WARNING: Sequences tr_A0A091EGJ3_A0A091EGJ3_CORBR_85066 and tr_A0A093GVM6_A0A093GVM6_DRYPU_118200 are exactly identical! WARNING: Sequences tr_A0A0V0XYX3_A0A0V0XYX3_TRIPS_6337 and tr_A0A0V1MPN3_A0A0V1MPN3_9BILA_268474 are exactly identical! WARNING: Sequences tr_A0A0V0XYX3_A0A0V0XYX3_TRIPS_6337 and tr_A0A0V1HV07_A0A0V1HV07_9BILA_268475 are exactly identical! WARNING: Sequences tr_A0A1S3ZAT9_A0A1S3ZAT9_TOBAC_4097 and tr_A0A1U7WXZ7_A0A1U7WXZ7_NICSY_4096 are exactly identical! WARNING: Sequences tr_A0A1U8GCJ3_A0A1U8GCJ3_CAPAN_4072 and tr_A0A2G3CP17_A0A2G3CP17_CAPCH_80379 are exactly identical! WARNING: Duplicate sequences found: 16 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189.raxml.reduced.phy Alignment comprises 1 partitions and 483 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 483 / 483 Gaps: 21.72 % Invariant sites: 0.21 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 389 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 69 / 5520 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -259658.928305] Initial branch length optimization [00:00:01 -207694.269403] Model parameter optimization (eps = 10.000000) [00:00:18 -206331.855867] AUTODETECT spr round 1 (radius: 5) [00:00:46 -143227.370180] AUTODETECT spr round 2 (radius: 10) [00:01:20 -107859.009191] AUTODETECT spr round 3 (radius: 15) [00:01:59 -92382.043605] AUTODETECT spr round 4 (radius: 20) [00:02:43 -87295.849702] AUTODETECT spr round 5 (radius: 25) [00:03:33 -86839.992367] SPR radius for FAST iterations: 25 (autodetect) [00:03:33 -86839.992367] Model parameter optimization (eps = 3.000000) [00:03:50 -86714.835143] FAST spr round 1 (radius: 25) [00:04:26 -78295.957460] FAST spr round 2 (radius: 25) [00:04:55 -77598.647502] FAST spr round 3 (radius: 25) [00:05:23 -77565.623780] FAST spr round 4 (radius: 25) [00:05:48 -77565.623117] Model parameter optimization (eps = 1.000000) [00:05:56 -77561.587494] SLOW spr round 1 (radius: 5) [00:06:40 -77542.816553] SLOW spr round 2 (radius: 5) [00:07:23 -77541.166386] SLOW spr round 3 (radius: 5) [00:08:04 -77541.165699] SLOW spr round 4 (radius: 10) [00:08:47 -77538.898004] SLOW spr round 5 (radius: 5) [00:09:45 -77536.496151] SLOW spr round 6 (radius: 5) [00:10:33 -77536.493445] SLOW spr round 7 (radius: 10) [00:11:19 -77535.937577] SLOW spr round 8 (radius: 5) [00:12:15 -77533.662521] SLOW spr round 9 (radius: 5) [00:13:02 -77533.662505] SLOW spr round 10 (radius: 10) [00:13:47 -77533.662503] SLOW spr round 11 (radius: 15) [00:14:50 -77533.662502] SLOW spr round 12 (radius: 20) [00:16:14 -77533.662502] SLOW spr round 13 (radius: 25) [00:18:03 -77533.662502] Model parameter optimization (eps = 0.100000) [00:18:06] ML tree search #1, logLikelihood: -77533.610317 [00:18:06 -259038.998561] Initial branch length optimization [00:18:08 -205000.308684] Model parameter optimization (eps = 10.000000) [00:18:22 -203710.317950] AUTODETECT spr round 1 (radius: 5) [00:18:51 -139581.072689] AUTODETECT spr round 2 (radius: 10) [00:19:27 -101611.072353] AUTODETECT spr round 3 (radius: 15) [00:20:13 -85313.458610] AUTODETECT spr round 4 (radius: 20) [00:21:08 -83759.165291] AUTODETECT spr round 5 (radius: 25) [00:22:11 -83759.151853] SPR radius for FAST iterations: 20 (autodetect) [00:22:11 -83759.151853] Model parameter optimization (eps = 3.000000) [00:22:29 -83664.935055] FAST spr round 1 (radius: 20) [00:23:04 -77749.811299] FAST spr round 2 (radius: 20) [00:23:38 -77574.731137] FAST spr round 3 (radius: 20) [00:24:06 -77553.834164] FAST spr round 4 (radius: 20) [00:24:31 -77553.832930] Model parameter optimization (eps = 1.000000) [00:24:41 -77550.665742] SLOW spr round 1 (radius: 5) [00:25:27 -77532.049326] SLOW spr round 2 (radius: 5) [00:26:12 -77530.461556] SLOW spr round 3 (radius: 5) [00:26:55 -77530.436335] SLOW spr round 4 (radius: 10) [00:27:37 -77529.180351] SLOW spr round 5 (radius: 5) [00:28:37 -77527.713250] SLOW spr round 6 (radius: 5) [00:29:25 -77527.713126] SLOW spr round 7 (radius: 10) [00:30:10 -77527.713042] SLOW spr round 8 (radius: 15) [00:31:14 -77527.712957] SLOW spr round 9 (radius: 20) [00:32:39 -77527.712872] SLOW spr round 10 (radius: 25) [00:34:31 -77527.712787] Model parameter optimization (eps = 0.100000) [00:34:34] ML tree search #2, logLikelihood: -77527.657291 [00:34:34 -260246.006993] Initial branch length optimization [00:34:36 -207646.164082] Model parameter optimization (eps = 10.000000) [00:34:58 -206273.917611] AUTODETECT spr round 1 (radius: 5) [00:35:27 -142190.684572] AUTODETECT spr round 2 (radius: 10) [00:36:03 -103751.214682] AUTODETECT spr round 3 (radius: 15) [00:36:47 -88873.434253] AUTODETECT spr round 4 (radius: 20) [00:37:32 -87376.343781] AUTODETECT spr round 5 (radius: 25) [00:38:23 -87314.091394] SPR radius for FAST iterations: 25 (autodetect) [00:38:23 -87314.091394] Model parameter optimization (eps = 3.000000) [00:38:41 -87233.575798] FAST spr round 1 (radius: 25) [00:39:21 -77763.421653] FAST spr round 2 (radius: 25) [00:39:55 -77555.434653] FAST spr round 3 (radius: 25) [00:40:22 -77551.584406] FAST spr round 4 (radius: 25) [00:40:46 -77551.583986] Model parameter optimization (eps = 1.000000) [00:40:54 -77550.003058] SLOW spr round 1 (radius: 5) [00:41:41 -77537.412186] SLOW spr round 2 (radius: 5) [00:42:25 -77534.766200] SLOW spr round 3 (radius: 5) [00:43:08 -77533.521537] SLOW spr round 4 (radius: 5) [00:43:49 -77533.521334] SLOW spr round 5 (radius: 10) [00:44:31 -77533.521228] SLOW spr round 6 (radius: 15) [00:45:40 -77533.521131] SLOW spr round 7 (radius: 20) [00:47:09 -77533.521035] SLOW spr round 8 (radius: 25) [00:48:52 -77533.520939] Model parameter optimization (eps = 0.100000) [00:48:56] ML tree search #3, logLikelihood: -77533.428397 [00:48:56 -262245.148223] Initial branch length optimization [00:48:57 -208076.056088] Model parameter optimization (eps = 10.000000) [00:49:14 -206655.444542] AUTODETECT spr round 1 (radius: 5) [00:49:42 -141577.072465] AUTODETECT spr round 2 (radius: 10) [00:50:16 -103271.989980] AUTODETECT spr round 3 (radius: 15) [00:50:55 -88992.934926] AUTODETECT spr round 4 (radius: 20) [00:51:40 -86952.741293] AUTODETECT spr round 5 (radius: 25) [00:52:36 -86952.730260] SPR radius for FAST iterations: 20 (autodetect) [00:52:36 -86952.730260] Model parameter optimization (eps = 3.000000) [00:52:47 -86878.892792] FAST spr round 1 (radius: 20) [00:53:24 -77743.316970] FAST spr round 2 (radius: 20) [00:53:55 -77582.816588] FAST spr round 3 (radius: 20) [00:54:23 -77558.333868] FAST spr round 4 (radius: 20) [00:54:47 -77554.839163] FAST spr round 5 (radius: 20) [00:55:11 -77553.262483] FAST spr round 6 (radius: 20) [00:55:35 -77553.262088] Model parameter optimization (eps = 1.000000) [00:55:43 -77550.642561] SLOW spr round 1 (radius: 5) [00:56:26 -77537.086861] SLOW spr round 2 (radius: 5) [00:57:06 -77536.702267] SLOW spr round 3 (radius: 5) [00:57:45 -77536.701017] SLOW spr round 4 (radius: 10) [00:58:26 -77536.436579] SLOW spr round 5 (radius: 5) [00:59:20 -77536.435965] SLOW spr round 6 (radius: 10) [01:00:08 -77536.435864] SLOW spr round 7 (radius: 15) [01:01:07 -77536.435780] SLOW spr round 8 (radius: 20) [01:02:29 -77536.435698] SLOW spr round 9 (radius: 25) [01:04:10 -77536.435617] Model parameter optimization (eps = 0.100000) [01:04:19] ML tree search #4, logLikelihood: -77535.741995 [01:04:19 -259037.270660] Initial branch length optimization [01:04:20 -207539.456312] Model parameter optimization (eps = 10.000000) [01:04:38 -206268.726031] AUTODETECT spr round 1 (radius: 5) [01:05:06 -132229.477511] AUTODETECT spr round 2 (radius: 10) [01:05:39 -101143.818173] AUTODETECT spr round 3 (radius: 15) [01:06:20 -85035.935316] AUTODETECT spr round 4 (radius: 20) [01:07:01 -83158.398684] AUTODETECT spr round 5 (radius: 25) [01:07:54 -82597.881836] SPR radius for FAST iterations: 25 (autodetect) [01:07:54 -82597.881836] Model parameter optimization (eps = 3.000000) [01:08:10 -82509.359212] FAST spr round 1 (radius: 25) [01:08:48 -77775.162051] FAST spr round 2 (radius: 25) [01:09:19 -77581.703237] FAST spr round 3 (radius: 25) [01:09:49 -77564.249881] FAST spr round 4 (radius: 25) [01:10:13 -77564.249297] Model parameter optimization (eps = 1.000000) [01:10:20 -77562.221986] SLOW spr round 1 (radius: 5) [01:11:04 -77549.043443] SLOW spr round 2 (radius: 5) [01:11:46 -77542.141792] SLOW spr round 3 (radius: 5) [01:12:27 -77537.929950] SLOW spr round 4 (radius: 5) [01:13:06 -77537.929307] SLOW spr round 5 (radius: 10) [01:13:45 -77537.929094] SLOW spr round 6 (radius: 15) [01:14:47 -77537.928972] SLOW spr round 7 (radius: 20) [01:16:04 -77537.928878] SLOW spr round 8 (radius: 25) [01:17:46 -77537.928793] Model parameter optimization (eps = 0.100000) [01:17:54] ML tree search #5, logLikelihood: -77537.743448 [01:17:54 -260707.583701] Initial branch length optimization [01:17:55 -206489.407949] Model parameter optimization (eps = 10.000000) [01:18:14 -205173.252233] AUTODETECT spr round 1 (radius: 5) [01:18:42 -140783.591313] AUTODETECT spr round 2 (radius: 10) [01:19:15 -105856.677728] AUTODETECT spr round 3 (radius: 15) [01:19:58 -87321.173496] AUTODETECT spr round 4 (radius: 20) [01:20:47 -85379.632205] AUTODETECT spr round 5 (radius: 25) [01:21:36 -84568.399065] SPR radius for FAST iterations: 25 (autodetect) [01:21:36 -84568.399065] Model parameter optimization (eps = 3.000000) [01:21:50 -84468.507516] FAST spr round 1 (radius: 25) [01:22:26 -77837.341000] FAST spr round 2 (radius: 25) [01:22:58 -77591.880446] FAST spr round 3 (radius: 25) [01:23:27 -77558.418841] FAST spr round 4 (radius: 25) [01:23:51 -77558.414763] Model parameter optimization (eps = 1.000000) [01:24:01 -77552.768300] SLOW spr round 1 (radius: 5) [01:24:43 -77533.198193] SLOW spr round 2 (radius: 5) [01:25:22 -77532.718076] SLOW spr round 3 (radius: 5) [01:26:01 -77532.717943] SLOW spr round 4 (radius: 10) [01:26:42 -77530.966119] SLOW spr round 5 (radius: 5) [01:27:36 -77530.038496] SLOW spr round 6 (radius: 5) [01:28:21 -77530.037995] SLOW spr round 7 (radius: 10) [01:29:04 -77527.537872] SLOW spr round 8 (radius: 5) [01:29:56 -77527.537769] SLOW spr round 9 (radius: 10) [01:30:42 -77527.537681] SLOW spr round 10 (radius: 15) [01:31:39 -77527.537598] SLOW spr round 11 (radius: 20) [01:32:58 -77527.537516] SLOW spr round 12 (radius: 25) [01:34:38 -77527.537434] Model parameter optimization (eps = 0.100000) [01:34:48] ML tree search #6, logLikelihood: -77526.909847 [01:34:48 -262084.017276] Initial branch length optimization [01:34:49 -205373.798965] Model parameter optimization (eps = 10.000000) [01:35:04 -204033.697633] AUTODETECT spr round 1 (radius: 5) [01:35:32 -137978.160155] AUTODETECT spr round 2 (radius: 10) [01:36:06 -101075.169951] AUTODETECT spr round 3 (radius: 15) [01:36:47 -91601.669752] AUTODETECT spr round 4 (radius: 20) [01:37:30 -86440.414298] AUTODETECT spr round 5 (radius: 25) [01:38:10 -85587.625157] SPR radius for FAST iterations: 25 (autodetect) [01:38:10 -85587.625157] Model parameter optimization (eps = 3.000000) [01:38:26 -85437.381706] FAST spr round 1 (radius: 25) [01:39:05 -77873.511846] FAST spr round 2 (radius: 25) [01:39:38 -77603.361589] FAST spr round 3 (radius: 25) [01:40:08 -77565.085393] FAST spr round 4 (radius: 25) [01:40:33 -77561.989405] FAST spr round 5 (radius: 25) [01:40:57 -77561.988489] Model parameter optimization (eps = 1.000000) [01:41:08 -77554.656865] SLOW spr round 1 (radius: 5) [01:41:50 -77534.730974] SLOW spr round 2 (radius: 5) [01:42:31 -77532.982534] SLOW spr round 3 (radius: 5) [01:43:11 -77532.516150] SLOW spr round 4 (radius: 5) [01:43:50 -77532.515936] SLOW spr round 5 (radius: 10) [01:44:30 -77532.515837] SLOW spr round 6 (radius: 15) [01:45:32 -77532.515741] SLOW spr round 7 (radius: 20) [01:46:52 -77532.278577] SLOW spr round 8 (radius: 5) [01:47:52 -77531.644930] SLOW spr round 9 (radius: 5) [01:48:40 -77531.644559] SLOW spr round 10 (radius: 10) [01:49:24 -77531.644399] SLOW spr round 11 (radius: 15) [01:50:25 -77531.644272] SLOW spr round 12 (radius: 20) [01:51:48 -77531.644159] SLOW spr round 13 (radius: 25) [01:53:30 -77531.644052] Model parameter optimization (eps = 0.100000) [01:53:37] ML tree search #7, logLikelihood: -77531.136479 [01:53:37 -262377.098538] Initial branch length optimization [01:53:38 -206176.496104] Model parameter optimization (eps = 10.000000) [01:53:55 -204811.392433] AUTODETECT spr round 1 (radius: 5) [01:54:24 -141008.824711] AUTODETECT spr round 2 (radius: 10) [01:54:58 -102189.973734] AUTODETECT spr round 3 (radius: 15) [01:55:38 -88689.486879] AUTODETECT spr round 4 (radius: 20) [01:56:21 -86707.537235] AUTODETECT spr round 5 (radius: 25) [01:57:13 -86271.155908] SPR radius for FAST iterations: 25 (autodetect) [01:57:13 -86271.155908] Model parameter optimization (eps = 3.000000) [01:57:27 -86145.473065] FAST spr round 1 (radius: 25) [01:58:05 -77820.608520] FAST spr round 2 (radius: 25) [01:58:38 -77587.426313] FAST spr round 3 (radius: 25) [01:59:06 -77563.577763] FAST spr round 4 (radius: 25) [01:59:30 -77563.274510] FAST spr round 5 (radius: 25) [01:59:54 -77563.272546] Model parameter optimization (eps = 1.000000) [02:00:05 -77550.020403] SLOW spr round 1 (radius: 5) [02:00:49 -77535.728913] SLOW spr round 2 (radius: 5) [02:01:30 -77534.457473] SLOW spr round 3 (radius: 5) [02:02:09 -77534.456931] SLOW spr round 4 (radius: 10) [02:02:50 -77532.672159] SLOW spr round 5 (radius: 5) [02:03:43 -77532.670943] SLOW spr round 6 (radius: 10) [02:04:31 -77532.670836] SLOW spr round 7 (radius: 15) [02:05:31 -77532.670791] SLOW spr round 8 (radius: 20) [02:06:53 -77532.670752] SLOW spr round 9 (radius: 25) [02:08:32 -77532.670715] Model parameter optimization (eps = 0.100000) [02:08:42] ML tree search #8, logLikelihood: -77531.947605 [02:08:42 -262073.995476] Initial branch length optimization [02:08:43 -207392.328404] Model parameter optimization (eps = 10.000000) [02:09:00 -206098.306735] AUTODETECT spr round 1 (radius: 5) [02:09:28 -140855.076402] AUTODETECT spr round 2 (radius: 10) [02:10:01 -110919.418611] AUTODETECT spr round 3 (radius: 15) [02:10:39 -98425.352999] AUTODETECT spr round 4 (radius: 20) [02:11:28 -89712.626525] AUTODETECT spr round 5 (radius: 25) [02:12:21 -88867.205823] SPR radius for FAST iterations: 25 (autodetect) [02:12:21 -88867.205823] Model parameter optimization (eps = 3.000000) [02:12:36 -88783.840413] FAST spr round 1 (radius: 25) [02:13:16 -77898.523426] FAST spr round 2 (radius: 25) [02:13:48 -77610.314695] FAST spr round 3 (radius: 25) [02:14:15 -77580.919579] FAST spr round 4 (radius: 25) [02:14:40 -77579.303010] FAST spr round 5 (radius: 25) [02:15:04 -77578.965827] FAST spr round 6 (radius: 25) [02:15:28 -77578.965615] Model parameter optimization (eps = 1.000000) [02:15:39 -77565.797331] SLOW spr round 1 (radius: 5) [02:16:22 -77547.069699] SLOW spr round 2 (radius: 5) [02:17:03 -77543.317866] SLOW spr round 3 (radius: 5) [02:17:43 -77541.849131] SLOW spr round 4 (radius: 5) [02:18:21 -77541.848906] SLOW spr round 5 (radius: 10) [02:19:01 -77541.848804] SLOW spr round 6 (radius: 15) [02:20:01 -77541.848726] SLOW spr round 7 (radius: 20) [02:21:16 -77541.848655] SLOW spr round 8 (radius: 25) [02:22:56 -77541.848585] Model parameter optimization (eps = 0.100000) [02:23:01] ML tree search #9, logLikelihood: -77541.760009 [02:23:01 -259986.091904] Initial branch length optimization [02:23:02 -208079.752679] Model parameter optimization (eps = 10.000000) [02:23:20 -206689.782491] AUTODETECT spr round 1 (radius: 5) [02:23:48 -137204.553863] AUTODETECT spr round 2 (radius: 10) [02:24:21 -99918.599011] AUTODETECT spr round 3 (radius: 15) [02:25:03 -85226.832054] AUTODETECT spr round 4 (radius: 20) [02:25:45 -82807.355519] AUTODETECT spr round 5 (radius: 25) [02:26:36 -82807.328391] SPR radius for FAST iterations: 20 (autodetect) [02:26:36 -82807.328391] Model parameter optimization (eps = 3.000000) [02:26:53 -82671.593914] FAST spr round 1 (radius: 20) [02:27:29 -78097.069487] FAST spr round 2 (radius: 20) [02:28:01 -77580.465235] FAST spr round 3 (radius: 20) [02:28:29 -77558.763007] FAST spr round 4 (radius: 20) [02:28:56 -77549.784441] FAST spr round 5 (radius: 20) [02:29:20 -77547.797566] FAST spr round 6 (radius: 20) [02:29:44 -77547.794724] Model parameter optimization (eps = 1.000000) [02:29:53 -77540.804655] SLOW spr round 1 (radius: 5) [02:30:35 -77532.373143] SLOW spr round 2 (radius: 5) [02:31:15 -77532.372490] SLOW spr round 3 (radius: 10) [02:31:55 -77530.315143] SLOW spr round 4 (radius: 5) [02:32:49 -77527.840407] SLOW spr round 5 (radius: 5) [02:33:33 -77527.840299] SLOW spr round 6 (radius: 10) [02:34:15 -77527.840294] SLOW spr round 7 (radius: 15) [02:35:13 -77527.840289] SLOW spr round 8 (radius: 20) [02:36:31 -77527.399634] SLOW spr round 9 (radius: 5) [02:37:29 -77527.195838] SLOW spr round 10 (radius: 5) [02:38:17 -77527.195166] SLOW spr round 11 (radius: 10) [02:39:00 -77527.195011] SLOW spr round 12 (radius: 15) [02:40:00 -77527.194976] SLOW spr round 13 (radius: 20) [02:41:19 -77527.194969] SLOW spr round 14 (radius: 25) [02:43:02 -77527.194967] Model parameter optimization (eps = 0.100000) [02:43:07] ML tree search #10, logLikelihood: -77527.080445 [02:43:07 -260009.807071] Initial branch length optimization [02:43:09 -208147.091551] Model parameter optimization (eps = 10.000000) [02:43:25 -206839.326839] AUTODETECT spr round 1 (radius: 5) [02:43:53 -142057.638751] AUTODETECT spr round 2 (radius: 10) [02:44:29 -102115.759069] AUTODETECT spr round 3 (radius: 15) [02:45:09 -87325.144704] AUTODETECT spr round 4 (radius: 20) [02:46:03 -85930.338270] AUTODETECT spr round 5 (radius: 25) [02:46:59 -85878.827988] SPR radius for FAST iterations: 25 (autodetect) [02:46:59 -85878.827988] Model parameter optimization (eps = 3.000000) [02:47:11 -85753.595912] FAST spr round 1 (radius: 25) [02:47:49 -77903.603410] FAST spr round 2 (radius: 25) [02:48:22 -77592.187633] FAST spr round 3 (radius: 25) [02:48:52 -77568.832676] FAST spr round 4 (radius: 25) [02:49:16 -77568.832411] Model parameter optimization (eps = 1.000000) [02:49:20 -77568.254000] SLOW spr round 1 (radius: 5) [02:50:04 -77544.513357] SLOW spr round 2 (radius: 5) [02:50:47 -77535.483730] SLOW spr round 3 (radius: 5) [02:51:27 -77535.406445] SLOW spr round 4 (radius: 10) [02:52:06 -77535.406119] SLOW spr round 5 (radius: 15) [02:53:07 -77535.406028] SLOW spr round 6 (radius: 20) [02:54:24 -77535.405992] SLOW spr round 7 (radius: 25) [02:56:04 -77535.405971] Model parameter optimization (eps = 0.100000) [02:56:10] ML tree search #11, logLikelihood: -77535.240017 [02:56:10 -265704.493766] Initial branch length optimization [02:56:11 -209278.894152] Model parameter optimization (eps = 10.000000) [02:56:29 -207984.144756] AUTODETECT spr round 1 (radius: 5) [02:56:57 -142245.118652] AUTODETECT spr round 2 (radius: 10) [02:57:30 -113557.543378] AUTODETECT spr round 3 (radius: 15) [02:58:13 -94109.154505] AUTODETECT spr round 4 (radius: 20) [02:58:58 -88228.755604] AUTODETECT spr round 5 (radius: 25) [02:59:40 -87760.739409] SPR radius for FAST iterations: 25 (autodetect) [02:59:40 -87760.739409] Model parameter optimization (eps = 3.000000) [02:59:56 -87633.906759] FAST spr round 1 (radius: 25) [03:00:34 -77884.342969] FAST spr round 2 (radius: 25) [03:01:06 -77584.221710] FAST spr round 3 (radius: 25) [03:01:33 -77570.981439] FAST spr round 4 (radius: 25) [03:01:59 -77566.779477] FAST spr round 5 (radius: 25) [03:02:24 -77563.357258] FAST spr round 6 (radius: 25) [03:02:48 -77563.357241] Model parameter optimization (eps = 1.000000) [03:03:00 -77557.351234] SLOW spr round 1 (radius: 5) [03:03:43 -77528.457809] SLOW spr round 2 (radius: 5) [03:04:24 -77526.824139] SLOW spr round 3 (radius: 5) [03:05:03 -77526.822394] SLOW spr round 4 (radius: 10) [03:05:43 -77526.822001] SLOW spr round 5 (radius: 15) [03:06:43 -77526.821898] SLOW spr round 6 (radius: 20) [03:08:02 -77526.821871] SLOW spr round 7 (radius: 25) [03:09:43 -77526.821863] Model parameter optimization (eps = 0.100000) [03:09:49] ML tree search #12, logLikelihood: -77526.504063 [03:09:50 -259468.524744] Initial branch length optimization [03:09:51 -204026.339618] Model parameter optimization (eps = 10.000000) [03:10:16 -202660.253654] AUTODETECT spr round 1 (radius: 5) [03:10:44 -139333.269589] AUTODETECT spr round 2 (radius: 10) [03:11:18 -107942.270817] AUTODETECT spr round 3 (radius: 15) [03:11:58 -91552.411900] AUTODETECT spr round 4 (radius: 20) [03:12:40 -89733.699851] AUTODETECT spr round 5 (radius: 25) [03:13:26 -87476.016317] SPR radius for FAST iterations: 25 (autodetect) [03:13:26 -87476.016317] Model parameter optimization (eps = 3.000000) [03:13:47 -87355.286085] FAST spr round 1 (radius: 25) [03:14:25 -78275.057937] FAST spr round 2 (radius: 25) [03:14:59 -77692.334773] FAST spr round 3 (radius: 25) [03:15:25 -77617.913485] FAST spr round 4 (radius: 25) [03:15:51 -77556.321600] FAST spr round 5 (radius: 25) [03:16:15 -77556.321316] Model parameter optimization (eps = 1.000000) [03:16:24 -77552.159228] SLOW spr round 1 (radius: 5) [03:17:07 -77542.263322] SLOW spr round 2 (radius: 5) [03:17:50 -77534.921785] SLOW spr round 3 (radius: 5) [03:18:29 -77534.792124] SLOW spr round 4 (radius: 5) [03:19:08 -77534.791552] SLOW spr round 5 (radius: 10) [03:19:48 -77534.791517] SLOW spr round 6 (radius: 15) [03:20:50 -77534.791503] SLOW spr round 7 (radius: 20) [03:22:09 -77534.791493] SLOW spr round 8 (radius: 25) [03:23:50 -77534.791484] Model parameter optimization (eps = 0.100000) [03:23:56] ML tree search #13, logLikelihood: -77534.673488 [03:23:56 -261535.630048] Initial branch length optimization [03:23:57 -206531.590590] Model parameter optimization (eps = 10.000000) [03:24:15 -205178.158973] AUTODETECT spr round 1 (radius: 5) [03:24:44 -137075.086612] AUTODETECT spr round 2 (radius: 10) [03:25:15 -106696.239214] AUTODETECT spr round 3 (radius: 15) [03:25:55 -90269.902362] AUTODETECT spr round 4 (radius: 20) [03:26:34 -89514.977728] AUTODETECT spr round 5 (radius: 25) [03:27:20 -87080.168020] SPR radius for FAST iterations: 25 (autodetect) [03:27:20 -87080.168020] Model parameter optimization (eps = 3.000000) [03:27:33 -86963.183944] FAST spr round 1 (radius: 25) [03:28:13 -77726.645703] FAST spr round 2 (radius: 25) [03:28:44 -77548.525750] FAST spr round 3 (radius: 25) [03:29:10 -77544.402325] FAST spr round 4 (radius: 25) [03:29:35 -77544.401490] Model parameter optimization (eps = 1.000000) [03:29:45 -77536.498008] SLOW spr round 1 (radius: 5) [03:30:29 -77528.863593] SLOW spr round 2 (radius: 5) [03:31:09 -77528.738017] SLOW spr round 3 (radius: 5) [03:31:48 -77528.737925] SLOW spr round 4 (radius: 10) [03:32:29 -77528.263133] SLOW spr round 5 (radius: 5) [03:33:22 -77528.262870] SLOW spr round 6 (radius: 10) [03:34:09 -77528.262746] SLOW spr round 7 (radius: 15) [03:35:05 -77528.129317] SLOW spr round 8 (radius: 5) [03:36:02 -77528.121938] SLOW spr round 9 (radius: 10) [03:36:53 -77528.119783] SLOW spr round 10 (radius: 15) [03:37:50 -77528.119059] SLOW spr round 11 (radius: 20) [03:39:08 -77528.118780] SLOW spr round 12 (radius: 25) [03:40:46 -77528.118643] Model parameter optimization (eps = 0.100000) [03:40:55] ML tree search #14, logLikelihood: -77527.156558 [03:40:55 -260977.424863] Initial branch length optimization [03:40:56 -205104.113578] Model parameter optimization (eps = 10.000000) [03:41:15 -203796.640085] AUTODETECT spr round 1 (radius: 5) [03:41:44 -139268.827906] AUTODETECT spr round 2 (radius: 10) [03:42:17 -106001.752082] AUTODETECT spr round 3 (radius: 15) [03:42:57 -87433.387021] AUTODETECT spr round 4 (radius: 20) [03:43:46 -85145.309609] AUTODETECT spr round 5 (radius: 25) [03:44:41 -84956.956888] SPR radius for FAST iterations: 25 (autodetect) [03:44:41 -84956.956888] Model parameter optimization (eps = 3.000000) [03:44:59 -84840.146056] FAST spr round 1 (radius: 25) [03:45:39 -78051.465730] FAST spr round 2 (radius: 25) [03:46:09 -77582.657108] FAST spr round 3 (radius: 25) [03:46:37 -77563.409993] FAST spr round 4 (radius: 25) [03:47:01 -77561.865832] FAST spr round 5 (radius: 25) [03:47:26 -77561.863795] Model parameter optimization (eps = 1.000000) [03:47:36 -77558.522729] SLOW spr round 1 (radius: 5) [03:48:19 -77543.459231] SLOW spr round 2 (radius: 5) [03:49:01 -77541.629763] SLOW spr round 3 (radius: 5) [03:49:40 -77541.629182] SLOW spr round 4 (radius: 10) [03:50:18 -77539.467625] SLOW spr round 5 (radius: 5) [03:51:11 -77537.111722] SLOW spr round 6 (radius: 5) [03:51:55 -77537.111677] SLOW spr round 7 (radius: 10) [03:52:36 -77537.111669] SLOW spr round 8 (radius: 15) [03:53:35 -77537.111662] SLOW spr round 9 (radius: 20) [03:54:52 -77536.822029] SLOW spr round 10 (radius: 5) [03:55:50 -77536.602812] SLOW spr round 11 (radius: 5) [03:56:37 -77536.602653] SLOW spr round 12 (radius: 10) [03:57:19 -77536.602630] SLOW spr round 13 (radius: 15) [03:58:19 -77536.602626] SLOW spr round 14 (radius: 20) [03:59:36 -77536.602625] SLOW spr round 15 (radius: 25) [04:01:15 -77536.602624] Model parameter optimization (eps = 0.100000) [04:01:18] ML tree search #15, logLikelihood: -77536.582997 [04:01:19 -257729.692876] Initial branch length optimization [04:01:20 -206563.411443] Model parameter optimization (eps = 10.000000) [04:01:37 -205176.811620] AUTODETECT spr round 1 (radius: 5) [04:02:05 -141091.160997] AUTODETECT spr round 2 (radius: 10) [04:02:39 -105160.344722] AUTODETECT spr round 3 (radius: 15) [04:03:18 -88699.988927] AUTODETECT spr round 4 (radius: 20) [04:04:04 -86798.624257] AUTODETECT spr round 5 (radius: 25) [04:04:56 -85947.236694] SPR radius for FAST iterations: 25 (autodetect) [04:04:56 -85947.236694] Model parameter optimization (eps = 3.000000) [04:05:11 -85853.346702] FAST spr round 1 (radius: 25) [04:05:51 -77888.306465] FAST spr round 2 (radius: 25) [04:06:23 -77590.151842] FAST spr round 3 (radius: 25) [04:06:51 -77566.362721] FAST spr round 4 (radius: 25) [04:07:16 -77557.075166] FAST spr round 5 (radius: 25) [04:07:41 -77557.075148] Model parameter optimization (eps = 1.000000) [04:07:51 -77547.512944] SLOW spr round 1 (radius: 5) [04:08:34 -77522.926753] SLOW spr round 2 (radius: 5) [04:09:15 -77522.424443] SLOW spr round 3 (radius: 5) [04:09:55 -77522.424223] SLOW spr round 4 (radius: 10) [04:10:34 -77522.424187] SLOW spr round 5 (radius: 15) [04:11:35 -77522.424167] SLOW spr round 6 (radius: 20) [04:12:52 -77522.424151] SLOW spr round 7 (radius: 25) [04:14:33 -77522.424135] Model parameter optimization (eps = 0.100000) [04:14:36] ML tree search #16, logLikelihood: -77522.337826 [04:14:36 -259191.848201] Initial branch length optimization [04:14:38 -207161.722524] Model parameter optimization (eps = 10.000000) [04:14:56 -205921.421631] AUTODETECT spr round 1 (radius: 5) [04:15:24 -134801.372283] AUTODETECT spr round 2 (radius: 10) [04:15:58 -100594.435804] AUTODETECT spr round 3 (radius: 15) [04:16:38 -88528.700285] AUTODETECT spr round 4 (radius: 20) [04:17:23 -85325.312008] AUTODETECT spr round 5 (radius: 25) [04:18:16 -85295.265105] SPR radius for FAST iterations: 25 (autodetect) [04:18:16 -85295.265105] Model parameter optimization (eps = 3.000000) [04:18:32 -85212.604525] FAST spr round 1 (radius: 25) [04:19:09 -77928.152201] FAST spr round 2 (radius: 25) [04:19:41 -77602.628779] FAST spr round 3 (radius: 25) [04:20:09 -77582.416579] FAST spr round 4 (radius: 25) [04:20:33 -77582.414565] Model parameter optimization (eps = 1.000000) [04:20:43 -77576.828388] SLOW spr round 1 (radius: 5) [04:21:26 -77556.633089] SLOW spr round 2 (radius: 5) [04:22:08 -77554.360093] SLOW spr round 3 (radius: 5) [04:22:47 -77554.043640] SLOW spr round 4 (radius: 5) [04:23:26 -77554.041776] SLOW spr round 5 (radius: 10) [04:24:05 -77552.854065] SLOW spr round 6 (radius: 5) [04:24:58 -77551.358620] SLOW spr round 7 (radius: 5) [04:25:42 -77551.356580] SLOW spr round 8 (radius: 10) [04:26:23 -77551.354546] SLOW spr round 9 (radius: 15) [04:27:24 -77551.353762] SLOW spr round 10 (radius: 20) [04:28:37 -77551.353753] SLOW spr round 11 (radius: 25) [04:30:16 -77551.353745] Model parameter optimization (eps = 0.100000) [04:30:22] ML tree search #17, logLikelihood: -77551.229421 [04:30:22 -262879.101019] Initial branch length optimization [04:30:23 -207893.303435] Model parameter optimization (eps = 10.000000) [04:30:40 -206461.860705] AUTODETECT spr round 1 (radius: 5) [04:31:08 -138582.898222] AUTODETECT spr round 2 (radius: 10) [04:31:42 -106311.123333] AUTODETECT spr round 3 (radius: 15) [04:32:21 -92017.641316] AUTODETECT spr round 4 (radius: 20) [04:33:07 -86069.162336] AUTODETECT spr round 5 (radius: 25) [04:33:59 -85990.268388] SPR radius for FAST iterations: 25 (autodetect) [04:33:59 -85990.268388] Model parameter optimization (eps = 3.000000) [04:34:23 -85898.844909] FAST spr round 1 (radius: 25) [04:35:05 -77787.988934] FAST spr round 2 (radius: 25) [04:35:38 -77593.273364] FAST spr round 3 (radius: 25) [04:36:09 -77565.995584] FAST spr round 4 (radius: 25) [04:36:34 -77565.995207] Model parameter optimization (eps = 1.000000) [04:36:43 -77562.980743] SLOW spr round 1 (radius: 5) [04:37:27 -77537.458679] SLOW spr round 2 (radius: 5) [04:38:08 -77533.816860] SLOW spr round 3 (radius: 5) [04:38:48 -77533.816657] SLOW spr round 4 (radius: 10) [04:39:28 -77532.917575] SLOW spr round 5 (radius: 5) [04:40:20 -77532.917343] SLOW spr round 6 (radius: 10) [04:41:08 -77532.917336] SLOW spr round 7 (radius: 15) [04:42:05 -77532.917334] SLOW spr round 8 (radius: 20) [04:43:24 -77532.917334] SLOW spr round 9 (radius: 25) [04:45:04 -77532.917333] Model parameter optimization (eps = 0.100000) [04:45:10] ML tree search #18, logLikelihood: -77532.779559 [04:45:10 -256337.895531] Initial branch length optimization [04:45:11 -205294.256841] Model parameter optimization (eps = 10.000000) [04:45:27 -203923.269380] AUTODETECT spr round 1 (radius: 5) [04:45:54 -137689.772432] AUTODETECT spr round 2 (radius: 10) [04:46:28 -105716.402949] AUTODETECT spr round 3 (radius: 15) [04:47:08 -94328.730218] AUTODETECT spr round 4 (radius: 20) [04:47:56 -85177.134398] AUTODETECT spr round 5 (radius: 25) [04:48:43 -85055.155779] SPR radius for FAST iterations: 25 (autodetect) [04:48:43 -85055.155779] Model parameter optimization (eps = 3.000000) [04:49:01 -84981.106193] FAST spr round 1 (radius: 25) [04:49:39 -77953.709307] FAST spr round 2 (radius: 25) [04:50:09 -77585.133183] FAST spr round 3 (radius: 25) [04:50:37 -77564.413270] FAST spr round 4 (radius: 25) [04:51:01 -77564.412524] Model parameter optimization (eps = 1.000000) [04:51:11 -77560.304614] SLOW spr round 1 (radius: 5) [04:51:54 -77543.256545] SLOW spr round 2 (radius: 5) [04:52:36 -77540.703943] SLOW spr round 3 (radius: 5) [04:53:17 -77535.763754] SLOW spr round 4 (radius: 5) [04:53:56 -77534.429978] SLOW spr round 5 (radius: 5) [04:54:35 -77534.421985] SLOW spr round 6 (radius: 10) [04:55:15 -77534.421728] SLOW spr round 7 (radius: 15) [04:56:15 -77534.421571] SLOW spr round 8 (radius: 20) [04:57:37 -77534.421439] SLOW spr round 9 (radius: 25) [04:59:22 -77534.421316] Model parameter optimization (eps = 0.100000) [04:59:29] ML tree search #19, logLikelihood: -77534.304591 [04:59:30 -261009.708830] Initial branch length optimization [04:59:31 -208025.507736] Model parameter optimization (eps = 10.000000) [04:59:47 -206692.849030] AUTODETECT spr round 1 (radius: 5) [05:00:15 -135073.701386] AUTODETECT spr round 2 (radius: 10) [05:00:50 -103421.447515] AUTODETECT spr round 3 (radius: 15) [05:01:32 -88124.960806] AUTODETECT spr round 4 (radius: 20) [05:02:12 -85733.373855] AUTODETECT spr round 5 (radius: 25) [05:02:54 -85700.269085] SPR radius for FAST iterations: 25 (autodetect) [05:02:55 -85700.269085] Model parameter optimization (eps = 3.000000) [05:03:15 -85539.163504] FAST spr round 1 (radius: 25) [05:03:51 -78144.870104] FAST spr round 2 (radius: 25) [05:04:22 -77567.373589] FAST spr round 3 (radius: 25) [05:04:50 -77556.072141] FAST spr round 4 (radius: 25) [05:05:15 -77550.936687] FAST spr round 5 (radius: 25) [05:05:40 -77550.936603] Model parameter optimization (eps = 1.000000) [05:05:48 -77549.676790] SLOW spr round 1 (radius: 5) [05:06:31 -77532.355959] SLOW spr round 2 (radius: 5) [05:07:11 -77532.239508] SLOW spr round 3 (radius: 5) [05:07:50 -77532.239255] SLOW spr round 4 (radius: 10) [05:08:30 -77529.959291] SLOW spr round 5 (radius: 5) [05:09:25 -77527.522875] SLOW spr round 6 (radius: 5) [05:10:09 -77527.522769] SLOW spr round 7 (radius: 10) [05:10:52 -77527.522763] SLOW spr round 8 (radius: 15) [05:11:50 -77527.522761] SLOW spr round 9 (radius: 20) [05:13:07 -77527.522759] SLOW spr round 10 (radius: 25) [05:14:45 -77527.522758] Model parameter optimization (eps = 0.100000) [05:14:49] ML tree search #20, logLikelihood: -77527.503473 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.163195,0.584030) (0.217370,0.595105) (0.362473,0.911311) (0.256961,1.731797) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -77522.337826 AIC score: 156606.675652 / AICc score: 1378090.675652 / BIC score: 159871.268658 Free parameters (model + branch lengths): 781 WARNING: Number of free parameters (K=781) is larger than alignment size (n=483). This might lead to overfitting and compromise tree inference results! WARNING: Best ML tree contains 36 near-zero branches! Best ML tree with collapsed near-zero branches saved to: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189.raxml.bestTreeCollapsed Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/250721_run/phylogeny-snakemake/results/O00189/3_mltree/O00189.raxml.log Analysis started: 26-Jul-2021 00:10:21 / finished: 26-Jul-2021 05:25:11 Elapsed time: 18889.505 seconds Consumed energy: 895.460 Wh (= 4 km in an electric car, or 22 km with an e-scooter!)