RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 07-Jul-2021 04:30:41 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/2_msa/E9PJ23_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/3_mltree/E9PJ23 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/2_msa/E9PJ23_trimmed_msa.fasta [00:00:00] Loaded alignment with 377 taxa and 540 sites WARNING: Sequences tr_H2NQC5_H2NQC5_PONAB_9601 and tr_H2NRW3_H2NRW3_PONAB_9601 are exactly identical! WARNING: Sequences tr_H2NQC5_H2NQC5_PONAB_9601 and tr_H2NRX0_H2NRX0_PONAB_9601 are exactly identical! WARNING: Sequences tr_A0A0A6YYH2_A0A0A6YYH2_HUMAN_9606 and sp_A6NJ64_NPIL2_HUMAN_9606 are exactly identical! WARNING: Sequences tr_A0A0B4J1W7_A0A0B4J1W7_HUMAN_9606 and sp_E9PKD4_NPIA5_HUMAN_9606 are exactly identical! WARNING: Sequences sp_E9PIF3_NPIA2_HUMAN_9606 and sp_F8WFD2_NPIA3_HUMAN_9606 are exactly identical! WARNING: Sequences sp_E9PJI5_NPIA7_HUMAN_9606 and sp_P0DM63_NPIA8_HUMAN_9606 are exactly identical! WARNING: Sequences tr_F6Z2W4_F6Z2W4_MACMU_9544 and tr_G7Q0M8_G7Q0M8_MACFA_9541 are exactly identical! WARNING: Sequences tr_F7APW8_F7APW8_MACMU_9544 and tr_G7Q0N0_G7Q0N0_MACFA_9541 are exactly identical! WARNING: Sequences tr_F7APW8_F7APW8_MACMU_9544 and tr_A0A2K6BWS8_A0A2K6BWS8_MACNE_9545 are exactly identical! WARNING: Duplicate sequences found: 9 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/3_mltree/E9PJ23.raxml.reduced.phy Alignment comprises 1 partitions and 540 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 540 / 540 Gaps: 15.97 % Invariant sites: 0.74 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/3_mltree/E9PJ23.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 377 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 78 / 6240 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -240113.547712] Initial branch length optimization [00:00:01 -203607.716759] Model parameter optimization (eps = 10.000000) [00:00:22 -202349.233784] AUTODETECT spr round 1 (radius: 5) [00:00:55 -130586.520855] AUTODETECT spr round 2 (radius: 10) [00:01:37 -97637.796019] AUTODETECT spr round 3 (radius: 15) [00:02:28 -88672.615770] AUTODETECT spr round 4 (radius: 20) [00:03:29 -87856.587896] AUTODETECT spr round 5 (radius: 25) [00:04:45 -87856.536731] SPR radius for FAST iterations: 20 (autodetect) [00:04:45 -87856.536731] Model parameter optimization (eps = 3.000000) [00:04:59 -87788.105941] FAST spr round 1 (radius: 20) [00:05:47 -81433.021159] FAST spr round 2 (radius: 20) [00:06:26 -81062.385024] FAST spr round 3 (radius: 20) [00:07:04 -80956.466282] FAST spr round 4 (radius: 20) [00:07:34 -80955.900807] FAST spr round 5 (radius: 20) [00:08:04 -80955.898329] Model parameter optimization (eps = 1.000000) [00:08:12 -80953.784618] SLOW spr round 1 (radius: 5) [00:09:06 -80923.750583] SLOW spr round 2 (radius: 5) [00:09:54 -80923.748455] SLOW spr round 3 (radius: 10) [00:10:40 -80923.747346] SLOW spr round 4 (radius: 15) [00:11:57 -80923.746661] SLOW spr round 5 (radius: 20) [00:13:46 -80923.746206] SLOW spr round 6 (radius: 25) [00:16:05 -80923.745894] Model parameter optimization (eps = 0.100000) [00:16:08] ML tree search #1, logLikelihood: -80923.743175 [00:16:08 -238610.697000] Initial branch length optimization [00:16:09 -202892.771249] Model parameter optimization (eps = 10.000000) [00:16:44 -201783.056382] AUTODETECT spr round 1 (radius: 5) [00:17:18 -135078.356300] AUTODETECT spr round 2 (radius: 10) [00:18:00 -99867.700570] AUTODETECT spr round 3 (radius: 15) [00:18:56 -88149.929944] AUTODETECT spr round 4 (radius: 20) [00:20:12 -87714.230173] AUTODETECT spr round 5 (radius: 25) [00:21:29 -87711.369589] SPR radius for FAST iterations: 25 (autodetect) [00:21:29 -87711.369589] Model parameter optimization (eps = 3.000000) [00:21:44 -87624.631493] FAST spr round 1 (radius: 25) [00:22:16 -81153.205828] FAST spr round 2 (radius: 25) [00:22:39 -80941.336223] FAST spr round 3 (radius: 25) [00:22:57 -80932.253352] FAST spr round 4 (radius: 25) [00:23:14 -80932.253329] Model parameter optimization (eps = 1.000000) [00:23:18 -80931.051838] SLOW spr round 1 (radius: 5) [00:23:48 -80908.310580] SLOW spr round 2 (radius: 5) [00:24:14 -80907.525417] SLOW spr round 3 (radius: 5) [00:24:41 -80907.525232] SLOW spr round 4 (radius: 10) [00:25:08 -80907.525169] SLOW spr round 5 (radius: 15) [00:25:50 -80907.525147] SLOW spr round 6 (radius: 20) [00:26:51 -80907.525139] SLOW spr round 7 (radius: 25) [00:28:05 -80906.721901] SLOW spr round 8 (radius: 5) [00:28:44 -80906.719082] SLOW spr round 9 (radius: 10) [00:29:16 -80906.718991] SLOW spr round 10 (radius: 15) [00:29:54 -80906.718988] SLOW spr round 11 (radius: 20) [00:30:52 -80906.718988] SLOW spr round 12 (radius: 25) [00:31:57 -80906.718988] Model parameter optimization (eps = 0.100000) [00:32:01] ML tree search #2, logLikelihood: -80906.582046 [00:32:01 -239951.675925] Initial branch length optimization [00:32:02 -204023.955487] Model parameter optimization (eps = 10.000000) [00:32:19 -202839.433751] AUTODETECT spr round 1 (radius: 5) [00:32:37 -133044.354404] AUTODETECT spr round 2 (radius: 10) [00:33:00 -100664.061258] AUTODETECT spr round 3 (radius: 15) [00:33:27 -90909.286621] AUTODETECT spr round 4 (radius: 20) [00:34:00 -87907.092803] AUTODETECT spr round 5 (radius: 25) [00:34:38 -87862.673222] SPR radius for FAST iterations: 25 (autodetect) [00:34:38 -87862.673222] Model parameter optimization (eps = 3.000000) [00:34:48 -87762.053367] FAST spr round 1 (radius: 25) [00:35:12 -81188.895684] FAST spr round 2 (radius: 25) [00:35:34 -80960.835123] FAST spr round 3 (radius: 25) [00:35:52 -80945.986980] FAST spr round 4 (radius: 25) [00:36:08 -80945.816068] FAST spr round 5 (radius: 25) [00:36:23 -80945.815537] Model parameter optimization (eps = 1.000000) [00:36:29 -80941.984666] SLOW spr round 1 (radius: 5) [00:36:56 -80930.817919] SLOW spr round 2 (radius: 5) [00:37:22 -80929.436198] SLOW spr round 3 (radius: 5) [00:37:48 -80928.943840] SLOW spr round 4 (radius: 5) [00:38:13 -80928.331429] SLOW spr round 5 (radius: 5) [00:38:39 -80928.331248] SLOW spr round 6 (radius: 10) [00:39:04 -80927.821650] SLOW spr round 7 (radius: 5) [00:39:38 -80927.821582] SLOW spr round 8 (radius: 10) [00:40:07 -80927.821566] SLOW spr round 9 (radius: 15) [00:40:45 -80927.821553] SLOW spr round 10 (radius: 20) [00:41:41 -80927.821543] SLOW spr round 11 (radius: 25) [00:42:49 -80927.595481] SLOW spr round 12 (radius: 5) [00:43:26 -80927.577536] SLOW spr round 13 (radius: 10) [00:43:57 -80927.574646] SLOW spr round 14 (radius: 15) [00:44:33 -80927.572858] SLOW spr round 15 (radius: 20) [00:45:54 -80927.571752] SLOW spr round 16 (radius: 25) [00:48:02 -80926.805739] SLOW spr round 17 (radius: 5) [00:49:01 -80926.804820] SLOW spr round 18 (radius: 10) [00:49:33 -80926.804755] SLOW spr round 19 (radius: 15) [00:50:12 -80926.804751] SLOW spr round 20 (radius: 20) [00:51:10 -80926.804750] SLOW spr round 21 (radius: 25) [00:52:18 -80926.804750] Model parameter optimization (eps = 0.100000) [00:52:21] ML tree search #3, logLikelihood: -80926.768388 [00:52:21 -240016.443718] Initial branch length optimization [00:52:22 -204463.128601] Model parameter optimization (eps = 10.000000) [00:52:36 -203127.231845] AUTODETECT spr round 1 (radius: 5) [00:52:54 -136300.577427] AUTODETECT spr round 2 (radius: 10) [00:53:16 -96167.477290] AUTODETECT spr round 3 (radius: 15) [00:53:39 -90030.824240] AUTODETECT spr round 4 (radius: 20) [00:54:14 -89200.132091] AUTODETECT spr round 5 (radius: 25) [00:54:55 -89101.121242] SPR radius for FAST iterations: 25 (autodetect) [00:54:55 -89101.121242] Model parameter optimization (eps = 3.000000) [00:55:02 -89016.689459] FAST spr round 1 (radius: 25) [00:55:28 -81126.463602] FAST spr round 2 (radius: 25) [00:55:48 -80959.115192] FAST spr round 3 (radius: 25) [00:56:05 -80936.184724] FAST spr round 4 (radius: 25) [00:56:22 -80936.037191] FAST spr round 5 (radius: 25) [00:56:38 -80936.036397] Model parameter optimization (eps = 1.000000) [00:56:43 -80934.795812] SLOW spr round 1 (radius: 5) [00:57:10 -80921.090775] SLOW spr round 2 (radius: 5) [00:57:37 -80918.676053] SLOW spr round 3 (radius: 5) [00:58:02 -80918.675627] SLOW spr round 4 (radius: 10) [00:58:27 -80918.675385] SLOW spr round 5 (radius: 15) [00:59:07 -80918.675230] SLOW spr round 6 (radius: 20) [01:00:07 -80918.675128] SLOW spr round 7 (radius: 25) [01:01:19 -80918.675061] Model parameter optimization (eps = 0.100000) [01:01:21] ML tree search #4, logLikelihood: -80918.611155 [01:01:21 -241086.484365] Initial branch length optimization [01:01:22 -204801.939498] Model parameter optimization (eps = 10.000000) [01:01:36 -203696.241951] AUTODETECT spr round 1 (radius: 5) [01:01:54 -136943.023432] AUTODETECT spr round 2 (radius: 10) [01:02:17 -101002.556842] AUTODETECT spr round 3 (radius: 15) [01:02:43 -89522.159072] AUTODETECT spr round 4 (radius: 20) [01:03:19 -87971.596632] AUTODETECT spr round 5 (radius: 25) [01:03:58 -87909.779874] SPR radius for FAST iterations: 25 (autodetect) [01:03:58 -87909.779874] Model parameter optimization (eps = 3.000000) [01:04:05 -87832.619490] FAST spr round 1 (radius: 25) [01:04:30 -81143.237904] FAST spr round 2 (radius: 25) [01:04:49 -80961.153363] FAST spr round 3 (radius: 25) [01:05:05 -80957.448558] FAST spr round 4 (radius: 25) [01:05:35 -80957.446431] Model parameter optimization (eps = 1.000000) [01:05:41 -80955.582063] SLOW spr round 1 (radius: 5) [01:06:10 -80937.630339] SLOW spr round 2 (radius: 5) [01:06:35 -80936.919604] SLOW spr round 3 (radius: 5) [01:07:00 -80936.917717] SLOW spr round 4 (radius: 10) [01:07:25 -80926.673112] SLOW spr round 5 (radius: 5) [01:08:00 -80923.151517] SLOW spr round 6 (radius: 5) [01:08:29 -80923.149791] SLOW spr round 7 (radius: 10) [01:08:54 -80923.148679] SLOW spr round 8 (radius: 15) [01:09:32 -80923.147941] SLOW spr round 9 (radius: 20) [01:10:28 -80923.147452] SLOW spr round 10 (radius: 25) [01:11:38 -80922.997966] SLOW spr round 11 (radius: 5) [01:12:15 -80922.969141] SLOW spr round 12 (radius: 10) [01:12:45 -80922.968831] SLOW spr round 13 (radius: 15) [01:13:21 -80922.968639] SLOW spr round 14 (radius: 20) [01:14:20 -80922.968520] SLOW spr round 15 (radius: 25) [01:15:33 -80922.196836] SLOW spr round 16 (radius: 5) [01:16:11 -80922.195931] SLOW spr round 17 (radius: 10) [01:16:43 -80922.195866] SLOW spr round 18 (radius: 15) [01:17:20 -80922.195861] SLOW spr round 19 (radius: 20) [01:18:19 -80922.195861] SLOW spr round 20 (radius: 25) [01:19:32 -80922.195861] Model parameter optimization (eps = 0.100000) [01:19:34] ML tree search #5, logLikelihood: -80922.172250 [01:19:34 -239808.356922] Initial branch length optimization [01:19:34 -203805.469155] Model parameter optimization (eps = 10.000000) [01:19:51 -202578.050301] AUTODETECT spr round 1 (radius: 5) [01:20:09 -137490.640606] AUTODETECT spr round 2 (radius: 10) [01:20:32 -96849.938749] AUTODETECT spr round 3 (radius: 15) [01:20:59 -91242.805331] AUTODETECT spr round 4 (radius: 20) [01:21:43 -89194.451276] AUTODETECT spr round 5 (radius: 25) [01:22:29 -88766.467906] SPR radius for FAST iterations: 25 (autodetect) [01:22:29 -88766.467906] Model parameter optimization (eps = 3.000000) [01:22:37 -88652.235312] FAST spr round 1 (radius: 25) [01:23:02 -81213.854073] FAST spr round 2 (radius: 25) [01:23:23 -80978.607595] FAST spr round 3 (radius: 25) [01:23:44 -80957.556802] FAST spr round 4 (radius: 25) [01:24:02 -80948.070766] FAST spr round 5 (radius: 25) [01:24:18 -80947.938684] FAST spr round 6 (radius: 25) [01:24:33 -80947.937698] Model parameter optimization (eps = 1.000000) [01:24:37 -80947.511259] SLOW spr round 1 (radius: 5) [01:25:04 -80934.002840] SLOW spr round 2 (radius: 5) [01:25:31 -80932.340072] SLOW spr round 3 (radius: 5) [01:25:57 -80932.339899] SLOW spr round 4 (radius: 10) [01:26:24 -80923.454001] SLOW spr round 5 (radius: 5) [01:26:59 -80923.440285] SLOW spr round 6 (radius: 10) [01:27:28 -80923.440198] SLOW spr round 7 (radius: 15) [01:28:05 -80923.440141] SLOW spr round 8 (radius: 20) [01:29:05 -80923.440104] SLOW spr round 9 (radius: 25) [01:30:19 -80923.440079] Model parameter optimization (eps = 0.100000) [01:30:21] ML tree search #6, logLikelihood: -80923.414220 [01:30:21 -239016.021550] Initial branch length optimization [01:30:21 -203379.829948] Model parameter optimization (eps = 10.000000) [01:30:38 -202208.527296] AUTODETECT spr round 1 (radius: 5) [01:30:55 -128804.936208] AUTODETECT spr round 2 (radius: 10) [01:31:17 -96990.353311] AUTODETECT spr round 3 (radius: 15) [01:31:44 -88940.635400] AUTODETECT spr round 4 (radius: 20) [01:32:20 -87803.766730] AUTODETECT spr round 5 (radius: 25) [01:33:01 -87722.156195] SPR radius for FAST iterations: 25 (autodetect) [01:33:01 -87722.156195] Model parameter optimization (eps = 3.000000) [01:33:08 -87630.660474] FAST spr round 1 (radius: 25) [01:33:33 -81254.595396] FAST spr round 2 (radius: 25) [01:33:54 -81034.500774] FAST spr round 3 (radius: 25) [01:34:13 -80998.321916] FAST spr round 4 (radius: 25) [01:34:28 -80998.293061] Model parameter optimization (eps = 1.000000) [01:34:33 -80994.825553] SLOW spr round 1 (radius: 5) [01:35:02 -80975.847056] SLOW spr round 2 (radius: 5) [01:35:29 -80974.274345] SLOW spr round 3 (radius: 5) [01:35:55 -80974.274175] SLOW spr round 4 (radius: 10) [01:36:21 -80972.421691] SLOW spr round 5 (radius: 5) [01:36:57 -80971.991282] SLOW spr round 6 (radius: 5) [01:37:26 -80971.989874] SLOW spr round 7 (radius: 10) [01:37:54 -80971.988993] SLOW spr round 8 (radius: 15) [01:38:37 -80971.988440] SLOW spr round 9 (radius: 20) [01:39:49 -80971.988092] SLOW spr round 10 (radius: 25) [01:41:08 -80971.987872] Model parameter optimization (eps = 0.100000) [01:41:11] ML tree search #7, logLikelihood: -80971.926375 [01:41:11 -239846.177197] Initial branch length optimization [01:41:12 -203609.517891] Model parameter optimization (eps = 10.000000) [01:41:27 -202431.449290] AUTODETECT spr round 1 (radius: 5) [01:41:45 -132092.269901] AUTODETECT spr round 2 (radius: 10) [01:42:06 -95224.849897] AUTODETECT spr round 3 (radius: 15) [01:42:35 -88635.281387] AUTODETECT spr round 4 (radius: 20) [01:43:15 -87237.593372] AUTODETECT spr round 5 (radius: 25) [01:43:58 -87236.581427] SPR radius for FAST iterations: 25 (autodetect) [01:43:58 -87236.581427] Model parameter optimization (eps = 3.000000) [01:44:05 -87133.381562] FAST spr round 1 (radius: 25) [01:44:29 -81278.998450] FAST spr round 2 (radius: 25) [01:44:49 -80998.725607] FAST spr round 3 (radius: 25) [01:45:06 -80980.007367] FAST spr round 4 (radius: 25) [01:45:23 -80980.006771] Model parameter optimization (eps = 1.000000) [01:45:28 -80976.943289] SLOW spr round 1 (radius: 5) [01:45:56 -80955.128822] SLOW spr round 2 (radius: 5) [01:46:22 -80955.128578] SLOW spr round 3 (radius: 10) [01:46:48 -80954.634662] SLOW spr round 4 (radius: 5) [01:47:23 -80954.633529] SLOW spr round 5 (radius: 10) [01:47:52 -80954.476713] SLOW spr round 6 (radius: 5) [01:48:27 -80953.908382] SLOW spr round 7 (radius: 5) [01:48:56 -80953.908380] SLOW spr round 8 (radius: 10) [01:49:22 -80953.908380] SLOW spr round 9 (radius: 15) [01:50:01 -80935.829662] SLOW spr round 10 (radius: 5) [01:50:39 -80935.829599] SLOW spr round 11 (radius: 10) [01:51:09 -80935.829557] SLOW spr round 12 (radius: 15) [01:51:47 -80935.829526] SLOW spr round 13 (radius: 20) [01:52:47 -80935.829504] SLOW spr round 14 (radius: 25) [01:54:00 -80935.829487] Model parameter optimization (eps = 0.100000) [01:54:02] ML tree search #8, logLikelihood: -80935.781790 [01:54:03 -239472.734354] Initial branch length optimization [01:54:03 -203257.583236] Model parameter optimization (eps = 10.000000) [01:54:20 -202031.681204] AUTODETECT spr round 1 (radius: 5) [01:54:38 -133722.003697] AUTODETECT spr round 2 (radius: 10) [01:55:00 -104003.801624] AUTODETECT spr round 3 (radius: 15) [01:55:26 -93313.550473] AUTODETECT spr round 4 (radius: 20) [01:56:04 -89742.702879] AUTODETECT spr round 5 (radius: 25) [01:56:44 -89493.203151] SPR radius for FAST iterations: 25 (autodetect) [01:56:44 -89493.203151] Model parameter optimization (eps = 3.000000) [01:56:51 -89406.689497] FAST spr round 1 (radius: 25) [01:57:16 -81216.259021] FAST spr round 2 (radius: 25) [01:57:37 -80969.587888] FAST spr round 3 (radius: 25) [01:57:56 -80943.523827] FAST spr round 4 (radius: 25) [01:58:13 -80943.520961] Model parameter optimization (eps = 1.000000) [01:58:17 -80940.870806] SLOW spr round 1 (radius: 5) [01:58:46 -80927.989966] SLOW spr round 2 (radius: 5) [01:59:12 -80927.988531] SLOW spr round 3 (radius: 10) [01:59:37 -80927.476593] SLOW spr round 4 (radius: 5) [02:00:12 -80927.476324] SLOW spr round 5 (radius: 10) [02:00:41 -80927.476295] SLOW spr round 6 (radius: 15) [02:01:19 -80927.476274] SLOW spr round 7 (radius: 20) [02:02:17 -80927.476259] SLOW spr round 8 (radius: 25) [02:03:24 -80927.476247] Model parameter optimization (eps = 0.100000) [02:03:26] ML tree search #9, logLikelihood: -80927.468547 [02:03:26 -240953.323825] Initial branch length optimization [02:03:27 -204524.313269] Model parameter optimization (eps = 10.000000) [02:03:38 -203337.782408] AUTODETECT spr round 1 (radius: 5) [02:03:56 -129138.837522] AUTODETECT spr round 2 (radius: 10) [02:04:19 -95522.887155] AUTODETECT spr round 3 (radius: 15) [02:04:46 -90061.690908] AUTODETECT spr round 4 (radius: 20) [02:05:20 -88938.851203] AUTODETECT spr round 5 (radius: 25) [02:06:04 -88684.430479] SPR radius for FAST iterations: 25 (autodetect) [02:06:04 -88684.430479] Model parameter optimization (eps = 3.000000) [02:06:11 -88584.878105] FAST spr round 1 (radius: 25) [02:06:36 -81190.930939] FAST spr round 2 (radius: 25) [02:06:56 -80980.571294] FAST spr round 3 (radius: 25) [02:07:15 -80953.470362] FAST spr round 4 (radius: 25) [02:07:31 -80953.469523] Model parameter optimization (eps = 1.000000) [02:07:36 -80950.913603] SLOW spr round 1 (radius: 5) [02:08:06 -80921.495074] SLOW spr round 2 (radius: 5) [02:08:33 -80918.958598] SLOW spr round 3 (radius: 5) [02:08:59 -80918.958520] SLOW spr round 4 (radius: 10) [02:09:25 -80908.547234] SLOW spr round 5 (radius: 5) [02:10:01 -80908.153604] SLOW spr round 6 (radius: 5) [02:10:30 -80908.153593] SLOW spr round 7 (radius: 10) [02:10:57 -80908.153589] SLOW spr round 8 (radius: 15) [02:11:38 -80908.153587] SLOW spr round 9 (radius: 20) [02:12:39 -80908.153586] SLOW spr round 10 (radius: 25) [02:13:49 -80906.969700] SLOW spr round 11 (radius: 5) [02:14:27 -80906.967084] SLOW spr round 12 (radius: 10) [02:14:58 -80906.966979] SLOW spr round 13 (radius: 15) [02:15:35 -80906.966962] SLOW spr round 14 (radius: 20) [02:16:34 -80906.966956] SLOW spr round 15 (radius: 25) [02:17:37 -80906.966953] Model parameter optimization (eps = 0.100000) [02:17:39] ML tree search #10, logLikelihood: -80906.950087 [02:17:39 -240202.200344] Initial branch length optimization [02:17:40 -204261.272832] Model parameter optimization (eps = 10.000000) [02:17:55 -202998.288133] AUTODETECT spr round 1 (radius: 5) [02:18:13 -128096.368302] AUTODETECT spr round 2 (radius: 10) [02:18:35 -95833.209172] AUTODETECT spr round 3 (radius: 15) [02:19:03 -89240.442106] AUTODETECT spr round 4 (radius: 20) [02:19:41 -86814.846490] AUTODETECT spr round 5 (radius: 25) [02:20:24 -86813.359384] SPR radius for FAST iterations: 25 (autodetect) [02:20:24 -86813.359384] Model parameter optimization (eps = 3.000000) [02:20:30 -86744.862273] FAST spr round 1 (radius: 25) [02:20:55 -81082.172131] FAST spr round 2 (radius: 25) [02:21:15 -80957.322513] FAST spr round 3 (radius: 25) [02:21:34 -80945.472678] FAST spr round 4 (radius: 25) [02:21:50 -80944.004198] FAST spr round 5 (radius: 25) [02:22:06 -80944.002800] Model parameter optimization (eps = 1.000000) [02:22:11 -80939.405619] SLOW spr round 1 (radius: 5) [02:22:39 -80929.455270] SLOW spr round 2 (radius: 5) [02:23:06 -80928.198463] SLOW spr round 3 (radius: 5) [02:23:31 -80928.198440] SLOW spr round 4 (radius: 10) [02:23:57 -80919.001598] SLOW spr round 5 (radius: 5) [02:24:32 -80919.001556] SLOW spr round 6 (radius: 10) [02:25:02 -80919.001556] SLOW spr round 7 (radius: 15) [02:25:42 -80919.001556] SLOW spr round 8 (radius: 20) [02:26:45 -80919.001556] SLOW spr round 9 (radius: 25) [02:28:04 -80919.001556] Model parameter optimization (eps = 0.100000) [02:28:06] ML tree search #11, logLikelihood: -80918.995597 [02:28:06 -239080.559408] Initial branch length optimization [02:28:07 -202266.244956] Model parameter optimization (eps = 10.000000) [02:28:23 -201215.238229] AUTODETECT spr round 1 (radius: 5) [02:28:41 -133351.947765] AUTODETECT spr round 2 (radius: 10) [02:29:03 -101643.220262] AUTODETECT spr round 3 (radius: 15) [02:29:33 -92733.946063] AUTODETECT spr round 4 (radius: 20) [02:30:09 -90040.083733] AUTODETECT spr round 5 (radius: 25) [02:30:53 -90030.114169] SPR radius for FAST iterations: 25 (autodetect) [02:30:53 -90030.114169] Model parameter optimization (eps = 3.000000) [02:31:00 -89963.186633] FAST spr round 1 (radius: 25) [02:31:26 -81243.164214] FAST spr round 2 (radius: 25) [02:31:47 -80964.545668] FAST spr round 3 (radius: 25) [02:32:06 -80946.941900] FAST spr round 4 (radius: 25) [02:32:23 -80942.857939] FAST spr round 5 (radius: 25) [02:32:40 -80942.856732] Model parameter optimization (eps = 1.000000) [02:32:45 -80938.886808] SLOW spr round 1 (radius: 5) [02:33:13 -80935.317220] SLOW spr round 2 (radius: 5) [02:33:40 -80935.066325] SLOW spr round 3 (radius: 5) [02:34:05 -80935.065026] SLOW spr round 4 (radius: 10) [02:34:32 -80926.109190] SLOW spr round 5 (radius: 5) [02:35:08 -80926.109044] SLOW spr round 6 (radius: 10) [02:35:39 -80926.109004] SLOW spr round 7 (radius: 15) [02:36:22 -80926.108985] SLOW spr round 8 (radius: 20) [02:37:37 -80924.344893] SLOW spr round 9 (radius: 5) [02:38:15 -80924.342468] SLOW spr round 10 (radius: 10) [02:38:46 -80924.342390] SLOW spr round 11 (radius: 15) [02:39:22 -80924.342387] SLOW spr round 12 (radius: 20) [02:40:19 -80924.342387] SLOW spr round 13 (radius: 25) [02:41:23 -80924.342387] Model parameter optimization (eps = 0.100000) [02:41:24] ML tree search #12, logLikelihood: -80924.289612 [02:41:24 -239318.237914] Initial branch length optimization [02:41:25 -203966.180905] Model parameter optimization (eps = 10.000000) [02:41:43 -202785.798934] AUTODETECT spr round 1 (radius: 5) [02:42:01 -134011.361023] AUTODETECT spr round 2 (radius: 10) [02:42:24 -102297.469430] AUTODETECT spr round 3 (radius: 15) [02:42:53 -89108.211535] AUTODETECT spr round 4 (radius: 20) [02:43:26 -87451.744850] AUTODETECT spr round 5 (radius: 25) [02:44:09 -87397.522987] SPR radius for FAST iterations: 25 (autodetect) [02:44:09 -87397.522987] Model parameter optimization (eps = 3.000000) [02:44:18 -87277.134063] FAST spr round 1 (radius: 25) [02:44:42 -81251.799213] FAST spr round 2 (radius: 25) [02:45:05 -80958.153206] FAST spr round 3 (radius: 25) [02:45:23 -80946.609518] FAST spr round 4 (radius: 25) [02:45:39 -80946.566142] Model parameter optimization (eps = 1.000000) [02:45:42 -80945.972793] SLOW spr round 1 (radius: 5) [02:46:10 -80933.572880] SLOW spr round 2 (radius: 5) [02:46:36 -80933.572679] SLOW spr round 3 (radius: 10) [02:47:02 -80931.811963] SLOW spr round 4 (radius: 5) [02:47:38 -80931.418784] SLOW spr round 5 (radius: 5) [02:48:08 -80931.418718] SLOW spr round 6 (radius: 10) [02:48:34 -80931.418674] SLOW spr round 7 (radius: 15) [02:49:14 -80931.418642] SLOW spr round 8 (radius: 20) [02:50:15 -80931.418618] SLOW spr round 9 (radius: 25) [02:51:27 -80931.418601] Model parameter optimization (eps = 0.100000) [02:51:30] ML tree search #13, logLikelihood: -80931.330827 [02:51:30 -241347.286011] Initial branch length optimization [02:51:31 -204850.402273] Model parameter optimization (eps = 10.000000) [02:51:46 -203597.371649] AUTODETECT spr round 1 (radius: 5) [02:52:05 -131911.526270] AUTODETECT spr round 2 (radius: 10) [02:52:26 -94461.864798] AUTODETECT spr round 3 (radius: 15) [02:52:50 -89743.891633] AUTODETECT spr round 4 (radius: 20) [02:53:24 -87542.151564] AUTODETECT spr round 5 (radius: 25) [02:54:05 -87498.851495] SPR radius for FAST iterations: 25 (autodetect) [02:54:05 -87498.851495] Model parameter optimization (eps = 3.000000) [02:54:12 -87417.132982] FAST spr round 1 (radius: 25) [02:54:35 -81330.422664] FAST spr round 2 (radius: 25) [02:54:56 -81018.943168] FAST spr round 3 (radius: 25) [02:55:16 -80952.721842] FAST spr round 4 (radius: 25) [02:55:33 -80945.024096] FAST spr round 5 (radius: 25) [02:55:49 -80941.402149] FAST spr round 6 (radius: 25) [02:56:04 -80941.402115] Model parameter optimization (eps = 1.000000) [02:56:09 -80937.409317] SLOW spr round 1 (radius: 5) [02:56:37 -80913.084103] SLOW spr round 2 (radius: 5) [02:57:02 -80910.570401] SLOW spr round 3 (radius: 5) [02:57:27 -80910.570004] SLOW spr round 4 (radius: 10) [02:57:52 -80910.569835] SLOW spr round 5 (radius: 15) [02:58:31 -80910.569764] SLOW spr round 6 (radius: 20) [02:59:28 -80910.569734] SLOW spr round 7 (radius: 25) [03:00:40 -80909.170390] SLOW spr round 8 (radius: 5) [03:01:17 -80909.168012] SLOW spr round 9 (radius: 10) [03:01:48 -80909.167936] SLOW spr round 10 (radius: 15) [03:02:24 -80909.167933] SLOW spr round 11 (radius: 20) [03:03:21 -80909.167932] SLOW spr round 12 (radius: 25) [03:04:24 -80909.167932] Model parameter optimization (eps = 0.100000) [03:04:26] ML tree search #14, logLikelihood: -80909.092164 [03:04:26 -239117.382634] Initial branch length optimization [03:04:27 -202358.612020] Model parameter optimization (eps = 10.000000) [03:04:52 -201269.313987] AUTODETECT spr round 1 (radius: 5) [03:05:10 -135230.463834] AUTODETECT spr round 2 (radius: 10) [03:05:32 -100554.828126] AUTODETECT spr round 3 (radius: 15) [03:05:58 -92275.488327] AUTODETECT spr round 4 (radius: 20) [03:06:38 -89330.830281] AUTODETECT spr round 5 (radius: 25) [03:07:19 -89213.306736] SPR radius for FAST iterations: 25 (autodetect) [03:07:19 -89213.306736] Model parameter optimization (eps = 3.000000) [03:07:27 -89092.817628] FAST spr round 1 (radius: 25) [03:07:51 -81266.495977] FAST spr round 2 (radius: 25) [03:08:12 -80995.637832] FAST spr round 3 (radius: 25) [03:08:30 -80981.434678] FAST spr round 4 (radius: 25) [03:08:47 -80978.836247] FAST spr round 5 (radius: 25) [03:09:03 -80978.834398] Model parameter optimization (eps = 1.000000) [03:09:07 -80978.226940] SLOW spr round 1 (radius: 5) [03:09:35 -80954.378963] SLOW spr round 2 (radius: 5) [03:10:02 -80954.377270] SLOW spr round 3 (radius: 10) [03:10:28 -80950.910218] SLOW spr round 4 (radius: 5) [03:11:07 -80933.103156] SLOW spr round 5 (radius: 5) [03:11:37 -80933.103116] SLOW spr round 6 (radius: 10) [03:12:04 -80932.685652] SLOW spr round 7 (radius: 5) [03:12:39 -80932.684701] SLOW spr round 8 (radius: 10) [03:13:08 -80932.684684] SLOW spr round 9 (radius: 15) [03:13:49 -80917.235254] SLOW spr round 10 (radius: 5) [03:14:27 -80917.029490] SLOW spr round 11 (radius: 5) [03:14:57 -80917.027477] SLOW spr round 12 (radius: 10) [03:15:25 -80907.751354] SLOW spr round 13 (radius: 5) [03:16:01 -80907.735510] SLOW spr round 14 (radius: 10) [03:16:30 -80907.733168] SLOW spr round 15 (radius: 15) [03:17:10 -80907.731583] SLOW spr round 16 (radius: 20) [03:18:10 -80907.730516] SLOW spr round 17 (radius: 25) [03:19:21 -80906.414861] SLOW spr round 18 (radius: 5) [03:19:59 -80906.412457] SLOW spr round 19 (radius: 10) [03:20:31 -80906.412381] SLOW spr round 20 (radius: 15) [03:21:08 -80906.412378] SLOW spr round 21 (radius: 20) [03:22:05 -80906.412378] SLOW spr round 22 (radius: 25) [03:23:09 -80906.412378] Model parameter optimization (eps = 0.100000) [03:23:11] ML tree search #15, logLikelihood: -80906.389623 [03:23:11 -240193.537484] Initial branch length optimization [03:23:12 -203940.302064] Model parameter optimization (eps = 10.000000) [03:23:28 -202720.793722] AUTODETECT spr round 1 (radius: 5) [03:23:46 -134299.302748] AUTODETECT spr round 2 (radius: 10) [03:24:10 -99092.603190] AUTODETECT spr round 3 (radius: 15) [03:24:37 -92769.691279] AUTODETECT spr round 4 (radius: 20) [03:25:15 -90562.751349] AUTODETECT spr round 5 (radius: 25) [03:26:00 -89871.476322] SPR radius for FAST iterations: 25 (autodetect) [03:26:00 -89871.476322] Model parameter optimization (eps = 3.000000) [03:26:08 -89775.018017] FAST spr round 1 (radius: 25) [03:26:33 -81282.207276] FAST spr round 2 (radius: 25) [03:26:54 -80951.054279] FAST spr round 3 (radius: 25) [03:27:12 -80945.802969] FAST spr round 4 (radius: 25) [03:27:29 -80945.802244] Model parameter optimization (eps = 1.000000) [03:27:35 -80941.541966] SLOW spr round 1 (radius: 5) [03:28:04 -80921.418816] SLOW spr round 2 (radius: 5) [03:28:31 -80918.507892] SLOW spr round 3 (radius: 5) [03:28:56 -80916.545817] SLOW spr round 4 (radius: 5) [03:29:22 -80916.545793] SLOW spr round 5 (radius: 10) [03:29:48 -80915.594409] SLOW spr round 6 (radius: 5) [03:30:24 -80915.594385] SLOW spr round 7 (radius: 10) [03:30:54 -80915.594380] SLOW spr round 8 (radius: 15) [03:31:33 -80915.594377] SLOW spr round 9 (radius: 20) [03:32:33 -80915.594375] SLOW spr round 10 (radius: 25) [03:33:48 -80915.594374] Model parameter optimization (eps = 0.100000) [03:33:52] ML tree search #16, logLikelihood: -80915.299011 [03:33:52 -241427.381780] Initial branch length optimization [03:33:53 -204074.770870] Model parameter optimization (eps = 10.000000) [03:34:07 -202847.874329] AUTODETECT spr round 1 (radius: 5) [03:34:25 -133995.376750] AUTODETECT spr round 2 (radius: 10) [03:34:47 -99655.804428] AUTODETECT spr round 3 (radius: 15) [03:35:12 -90422.875227] AUTODETECT spr round 4 (radius: 20) [03:35:45 -88266.650439] AUTODETECT spr round 5 (radius: 25) [03:36:22 -88265.160410] SPR radius for FAST iterations: 25 (autodetect) [03:36:22 -88265.160410] Model parameter optimization (eps = 3.000000) [03:36:30 -88165.388709] FAST spr round 1 (radius: 25) [03:36:55 -81311.104949] FAST spr round 2 (radius: 25) [03:37:17 -81051.970529] FAST spr round 3 (radius: 25) [03:37:35 -81037.666694] FAST spr round 4 (radius: 25) [03:37:51 -81037.666131] Model parameter optimization (eps = 1.000000) [03:37:55 -81036.623401] SLOW spr round 1 (radius: 5) [03:38:23 -81024.471225] SLOW spr round 2 (radius: 5) [03:38:51 -81019.856117] SLOW spr round 3 (radius: 5) [03:39:18 -81019.848136] SLOW spr round 4 (radius: 10) [03:39:44 -81010.422392] SLOW spr round 5 (radius: 5) [03:40:22 -80910.833391] SLOW spr round 6 (radius: 5) [03:40:52 -80910.833133] SLOW spr round 7 (radius: 10) [03:41:19 -80910.833091] SLOW spr round 8 (radius: 15) [03:41:59 -80910.833076] SLOW spr round 9 (radius: 20) [03:42:58 -80910.833071] SLOW spr round 10 (radius: 25) [03:44:09 -80909.649246] SLOW spr round 11 (radius: 5) [03:44:48 -80909.646472] SLOW spr round 12 (radius: 10) [03:45:18 -80909.646389] SLOW spr round 13 (radius: 15) [03:45:54 -80909.646386] SLOW spr round 14 (radius: 20) [03:46:51 -80909.646386] SLOW spr round 15 (radius: 25) [03:47:56 -80909.646386] Model parameter optimization (eps = 0.100000) [03:47:58] ML tree search #17, logLikelihood: -80909.566364 [03:47:58 -240769.706250] Initial branch length optimization [03:47:59 -204912.366883] Model parameter optimization (eps = 10.000000) [03:48:16 -203726.646688] AUTODETECT spr round 1 (radius: 5) [03:48:34 -133489.886424] AUTODETECT spr round 2 (radius: 10) [03:48:56 -100788.138006] AUTODETECT spr round 3 (radius: 15) [03:49:22 -88927.626103] AUTODETECT spr round 4 (radius: 20) [03:49:58 -88274.983265] AUTODETECT spr round 5 (radius: 25) [03:50:40 -88268.374556] SPR radius for FAST iterations: 25 (autodetect) [03:50:40 -88268.374556] Model parameter optimization (eps = 3.000000) [03:50:47 -88160.740442] FAST spr round 1 (radius: 25) [03:51:12 -81321.699046] FAST spr round 2 (radius: 25) [03:51:34 -80983.320020] FAST spr round 3 (radius: 25) [03:51:54 -80946.146427] FAST spr round 4 (radius: 25) [03:52:12 -80942.690861] FAST spr round 5 (radius: 25) [03:52:28 -80942.683753] Model parameter optimization (eps = 1.000000) [03:52:33 -80940.220534] SLOW spr round 1 (radius: 5) [03:53:01 -80933.142654] SLOW spr round 2 (radius: 5) [03:53:28 -80930.246341] SLOW spr round 3 (radius: 5) [03:53:54 -80930.245697] SLOW spr round 4 (radius: 10) [03:54:20 -80921.599374] SLOW spr round 5 (radius: 5) [03:54:56 -80921.598140] SLOW spr round 6 (radius: 10) [03:55:24 -80921.597947] SLOW spr round 7 (radius: 15) [03:56:02 -80921.597796] SLOW spr round 8 (radius: 20) [03:57:01 -80921.597679] SLOW spr round 9 (radius: 25) [03:58:08 -80921.597587] Model parameter optimization (eps = 0.100000) [03:58:10] ML tree search #18, logLikelihood: -80921.586456 [03:58:10 -241145.654059] Initial branch length optimization [03:58:11 -204059.412607] Model parameter optimization (eps = 10.000000) [03:58:25 -202843.456863] AUTODETECT spr round 1 (radius: 5) [03:58:43 -133468.201025] AUTODETECT spr round 2 (radius: 10) [03:59:06 -97998.125585] AUTODETECT spr round 3 (radius: 15) [03:59:34 -89610.739314] AUTODETECT spr round 4 (radius: 20) [04:00:07 -88797.664767] AUTODETECT spr round 5 (radius: 25) [04:00:43 -88797.229969] SPR radius for FAST iterations: 25 (autodetect) [04:00:43 -88797.229969] Model parameter optimization (eps = 3.000000) [04:00:51 -88687.676430] FAST spr round 1 (radius: 25) [04:01:16 -81305.932827] FAST spr round 2 (radius: 25) [04:01:38 -80975.078048] FAST spr round 3 (radius: 25) [04:01:56 -80950.314318] FAST spr round 4 (radius: 25) [04:02:11 -80950.311633] Model parameter optimization (eps = 1.000000) [04:02:16 -80946.722362] SLOW spr round 1 (radius: 5) [04:02:44 -80927.402342] SLOW spr round 2 (radius: 5) [04:03:11 -80927.223794] SLOW spr round 3 (radius: 5) [04:03:36 -80927.222881] SLOW spr round 4 (radius: 10) [04:04:01 -80926.607351] SLOW spr round 5 (radius: 5) [04:04:36 -80923.117313] SLOW spr round 6 (radius: 5) [04:05:05 -80923.116328] SLOW spr round 7 (radius: 10) [04:05:31 -80923.116167] SLOW spr round 8 (radius: 15) [04:06:09 -80923.116090] SLOW spr round 9 (radius: 20) [04:07:06 -80923.116046] SLOW spr round 10 (radius: 25) [04:08:16 -80923.116018] Model parameter optimization (eps = 0.100000) [04:08:18] ML tree search #19, logLikelihood: -80923.083244 [04:08:18 -236644.309121] Initial branch length optimization [04:08:19 -201418.546712] Model parameter optimization (eps = 10.000000) [04:08:35 -200166.448902] AUTODETECT spr round 1 (radius: 5) [04:08:53 -133053.995340] AUTODETECT spr round 2 (radius: 10) [04:09:14 -98436.936242] AUTODETECT spr round 3 (radius: 15) [04:09:43 -90155.681439] AUTODETECT spr round 4 (radius: 20) [04:10:22 -88763.680603] AUTODETECT spr round 5 (radius: 25) [04:11:04 -88763.076731] SPR radius for FAST iterations: 25 (autodetect) [04:11:04 -88763.076731] Model parameter optimization (eps = 3.000000) [04:11:11 -88679.535653] FAST spr round 1 (radius: 25) [04:11:36 -81208.904310] FAST spr round 2 (radius: 25) [04:11:57 -80945.327620] FAST spr round 3 (radius: 25) [04:12:15 -80934.719619] FAST spr round 4 (radius: 25) [04:12:31 -80932.562995] FAST spr round 5 (radius: 25) [04:12:47 -80932.556872] Model parameter optimization (eps = 1.000000) [04:12:52 -80929.628777] SLOW spr round 1 (radius: 5) [04:13:21 -80921.939952] SLOW spr round 2 (radius: 5) [04:13:47 -80921.911956] SLOW spr round 3 (radius: 10) [04:14:13 -80921.911916] SLOW spr round 4 (radius: 15) [04:14:54 -80921.911916] SLOW spr round 5 (radius: 20) [04:15:55 -80921.911916] SLOW spr round 6 (radius: 25) [04:17:08 -80921.911916] Model parameter optimization (eps = 0.100000) [04:17:10] ML tree search #20, logLikelihood: -80921.894163 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.201447,0.461174) (0.254242,0.681897) (0.332876,0.995802) (0.211435,1.902486) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -80906.389623 AIC score: 163326.779245 / AICc score: 1310938.779245 / BIC score: 166575.497084 Free parameters (model + branch lengths): 757 WARNING: Number of free parameters (K=757) is larger than alignment size (n=540). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/3_mltree/E9PJ23.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/3_mltree/E9PJ23.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/3_mltree/E9PJ23.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/E9PJ23/3_mltree/E9PJ23.raxml.log Analysis started: 07-Jul-2021 04:30:41 / finished: 07-Jul-2021 08:47:51 Elapsed time: 15430.170 seconds Consumed energy: 1300.653 Wh (= 7 km in an electric car, or 33 km with an e-scooter!)