RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, 28 cores, 251 GB RAM RAxML-NG was called at 01-Jul-2021 17:06:28 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/2_msa/A6NI03_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03 --seed 2 --threads 7 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (7 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/2_msa/A6NI03_trimmed_msa.fasta [00:00:00] Loaded alignment with 1001 taxa and 465 sites WARNING: Sequences tr_G1RI87_G1RI87_NOMLE_61853 and tr_M3ZBJ4_M3ZBJ4_NOMLE_61853 are exactly identical! WARNING: Sequences tr_H2PI71_H2PI71_PONAB_9601 and sp_Q5R7W8_BT2A2_PONAB_9601 are exactly identical! WARNING: Sequences tr_A0A2I3TLF3_A0A2I3TLF3_PANTR_9598 and sp_Q96PL5_ERMAP_HUMAN_9606 are exactly identical! WARNING: Sequences tr_A0A2J8ITD5_A0A2J8ITD5_PANTR_9598 and tr_A0A2R8ZI57_A0A2R8ZI57_PANPA_9597 are exactly identical! WARNING: Sequences tr_H2Q2Y1_H2Q2Y1_PANTR_9598 and sp_P19474_RO52_HUMAN_9606 are exactly identical! WARNING: Sequences tr_H2QSH7_H2QSH7_PANTR_9598 and tr_A0A2R9BIQ5_A0A2R9BIQ5_PANPA_9597 are exactly identical! WARNING: Sequences tr_K7BVH2_K7BVH2_PANTR_9598 and sp_Q96F44_TRI11_HUMAN_9606 are exactly identical! WARNING: Sequences tr_K7BVH2_K7BVH2_PANTR_9598 and tr_A0A2R8ZKT7_A0A2R8ZKT7_PANPA_9597 are exactly identical! WARNING: Sequences tr_A0A1D5QTX6_A0A1D5QTX6_MACMU_9544 and tr_A0A2K5M5M7_A0A2K5M5M7_CERAT_9531 are exactly identical! WARNING: Sequences tr_A0A1D5REF7_A0A1D5REF7_MACMU_9544 and tr_A0A2K6CBM5_A0A2K6CBM5_MACNE_9545 are exactly identical! WARNING: Sequences tr_F6W0V1_F6W0V1_MACMU_9544 and tr_G7P6Q0_G7P6Q0_MACFA_9541 are exactly identical! WARNING: Sequences tr_F6W0V1_F6W0V1_MACMU_9544 and tr_A0A2K5YPH2_A0A2K5YPH2_MANLE_9568 are exactly identical! WARNING: Sequences tr_F7GJW5_F7GJW5_MACMU_9544 and tr_G8F2Y8_G8F2Y8_MACFA_9541 are exactly identical! WARNING: Sequences tr_F7GJW5_F7GJW5_MACMU_9544 and tr_A0A2K6C8A4_A0A2K6C8A4_MACNE_9545 are exactly identical! WARNING: Sequences tr_F7GJW9_F7GJW9_MACMU_9544 and tr_A0A2K6BDB8_A0A2K6BDB8_MACNE_9545 are exactly identical! WARNING: Sequences tr_F7HRB7_F7HRB7_MACMU_9544 and tr_A0A2K6DW68_A0A2K6DW68_MACNE_9545 are exactly identical! WARNING: Sequences tr_A0A096N7V8_A0A096N7V8_PAPAN_9555 and tr_A0A2K5MWE8_A0A2K5MWE8_CERAT_9531 are exactly identical! WARNING: Sequences tr_A0A096NDN7_A0A096NDN7_PAPAN_9555 and tr_A0A2K6AIF2_A0A2K6AIF2_MANLE_9568 are exactly identical! WARNING: Sequences tr_A0A091V004_A0A091V004_NIPNI_128390 and tr_A0A087R134_A0A087R134_APTFO_9233 are exactly identical! WARNING: Sequences tr_A0A2K5LKX8_A0A2K5LKX8_CERAT_9531 and tr_A0A2K5YAG4_A0A2K5YAG4_MANLE_9568 are exactly identical! WARNING: Duplicate sequences found: 20 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03.raxml.reduced.phy Alignment comprises 1 partitions and 465 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 465 / 465 Gaps: 23.80 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03.raxml.rba Parallelization scheme autoconfig: 1 worker(s) x 7 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 1001 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 67 / 5360 [00:00:00] Data distribution: max. searches per worker: 20 Starting ML tree search with 20 distinct starting trees [00:00:00 -794051.192752] Initial branch length optimization [00:00:03 -696302.324305] Model parameter optimization (eps = 10.000000) [00:00:32 -691681.687028] AUTODETECT spr round 1 (radius: 5) [00:02:20 -482225.276826] AUTODETECT spr round 2 (radius: 10) [00:04:19 -341100.539523] AUTODETECT spr round 3 (radius: 15) [00:06:30 -291315.974076] AUTODETECT spr round 4 (radius: 20) [00:08:50 -275401.810085] AUTODETECT spr round 5 (radius: 25) [00:11:42 -273613.428655] SPR radius for FAST iterations: 25 (autodetect) [00:11:42 -273613.428655] Model parameter optimization (eps = 3.000000) [00:12:04 -273342.879164] FAST spr round 1 (radius: 25) [00:14:36 -243606.371894] FAST spr round 2 (radius: 25) [00:16:38 -242629.149060] FAST spr round 3 (radius: 25) [00:18:31 -242552.134859] FAST spr round 4 (radius: 25) [00:20:10 -242530.655362] FAST spr round 5 (radius: 25) [00:21:44 -242530.083941] FAST spr round 6 (radius: 25) [00:23:16 -242530.083435] Model parameter optimization (eps = 1.000000) [00:23:32 -242520.271214] SLOW spr round 1 (radius: 5) [00:25:41 -242473.657957] SLOW spr round 2 (radius: 5) [00:27:40 -242470.704148] SLOW spr round 3 (radius: 5) [00:29:36 -242469.809148] SLOW spr round 4 (radius: 5) [00:31:32 -242469.808975] SLOW spr round 5 (radius: 10) [00:33:30 -242469.808920] SLOW spr round 6 (radius: 15) [00:36:54 -242469.808866] SLOW spr round 7 (radius: 20) [00:41:56 -242469.808811] SLOW spr round 8 (radius: 25) [00:48:32 -242469.808757] Model parameter optimization (eps = 0.100000) [00:48:38] ML tree search #1, logLikelihood: -242469.786723 [00:48:38 -794168.514844] Initial branch length optimization [00:48:40 -694825.075595] Model parameter optimization (eps = 10.000000) [00:49:11 -690525.839147] AUTODETECT spr round 1 (radius: 5) [00:51:01 -500900.114131] AUTODETECT spr round 2 (radius: 10) [00:53:00 -348151.938519] AUTODETECT spr round 3 (radius: 15) [00:55:07 -296060.156986] AUTODETECT spr round 4 (radius: 20) [00:57:30 -278941.554922] AUTODETECT spr round 5 (radius: 25) [01:00:13 -275875.273508] SPR radius for FAST iterations: 25 (autodetect) [01:00:13 -275875.273508] Model parameter optimization (eps = 3.000000) [01:00:35 -275605.423903] FAST spr round 1 (radius: 25) [01:03:05 -244123.106066] FAST spr round 2 (radius: 25) [01:05:14 -242650.459480] FAST spr round 3 (radius: 25) [01:08:37 -242579.592389] FAST spr round 4 (radius: 25) [01:11:49 -242533.592351] FAST spr round 5 (radius: 25) [01:14:50 -242527.830292] FAST spr round 6 (radius: 25) [01:17:44 -242527.830284] Model parameter optimization (eps = 1.000000) [01:18:08 -242519.354260] SLOW spr round 1 (radius: 5) [01:22:13 -242459.117927] SLOW spr round 2 (radius: 5) [01:25:48 -242453.192427] SLOW spr round 3 (radius: 5) [01:27:48 -242453.192323] SLOW spr round 4 (radius: 10) [01:29:46 -242453.192313] SLOW spr round 5 (radius: 15) [01:33:06 -242453.192305] SLOW spr round 6 (radius: 20) [01:37:58 -242453.192296] SLOW spr round 7 (radius: 25) [01:44:07 -242453.192288] Model parameter optimization (eps = 0.100000) [01:44:12] ML tree search #2, logLikelihood: -242453.104668 [01:44:12 -787445.397364] Initial branch length optimization [01:44:15 -689996.378773] Model parameter optimization (eps = 10.000000) [01:44:44 -685875.893305] AUTODETECT spr round 1 (radius: 5) [01:46:33 -489112.473185] AUTODETECT spr round 2 (radius: 10) [01:48:31 -357898.424897] AUTODETECT spr round 3 (radius: 15) [01:50:43 -290617.776463] AUTODETECT spr round 4 (radius: 20) [01:53:21 -277398.736649] AUTODETECT spr round 5 (radius: 25) [01:56:11 -274040.496202] SPR radius for FAST iterations: 25 (autodetect) [01:56:11 -274040.496202] Model parameter optimization (eps = 3.000000) [01:56:37 -273805.999987] FAST spr round 1 (radius: 25) [01:59:06 -244001.248254] FAST spr round 2 (radius: 25) [02:01:04 -242600.692805] FAST spr round 3 (radius: 25) [02:02:52 -242547.084735] FAST spr round 4 (radius: 25) [02:04:29 -242533.435897] FAST spr round 5 (radius: 25) [02:06:06 -242517.480213] FAST spr round 6 (radius: 25) [02:07:39 -242516.536214] FAST spr round 7 (radius: 25) [02:09:12 -242516.536106] Model parameter optimization (eps = 1.000000) [02:09:24 -242512.099948] SLOW spr round 1 (radius: 5) [02:11:30 -242462.185551] SLOW spr round 2 (radius: 5) [02:13:31 -242456.987432] SLOW spr round 3 (radius: 5) [02:15:28 -242455.999059] SLOW spr round 4 (radius: 5) [02:17:24 -242455.998880] SLOW spr round 5 (radius: 10) [02:19:25 -242455.998873] SLOW spr round 6 (radius: 15) [02:22:53 -242455.998868] SLOW spr round 7 (radius: 20) [02:28:06 -242455.998862] SLOW spr round 8 (radius: 25) [02:34:49 -242455.998857] Model parameter optimization (eps = 0.100000) [02:35:01] ML tree search #3, logLikelihood: -242455.758882 [02:35:01 -794642.976075] Initial branch length optimization [02:35:04 -695382.468415] Model parameter optimization (eps = 10.000000) [02:35:29 -690981.524949] AUTODETECT spr round 1 (radius: 5) [02:37:17 -488904.048560] AUTODETECT spr round 2 (radius: 10) [02:39:16 -350618.927410] AUTODETECT spr round 3 (radius: 15) [02:41:32 -297599.148307] AUTODETECT spr round 4 (radius: 20) [02:44:12 -279963.801400] AUTODETECT spr round 5 (radius: 25) [02:47:57 -275613.818704] SPR radius for FAST iterations: 25 (autodetect) [02:47:57 -275613.818704] Model parameter optimization (eps = 3.000000) [02:48:17 -275364.701373] FAST spr round 1 (radius: 25) [02:50:54 -244006.780128] FAST spr round 2 (radius: 25) [02:52:55 -242729.671868] FAST spr round 3 (radius: 25) [02:54:43 -242628.169834] FAST spr round 4 (radius: 25) [02:56:21 -242601.283070] FAST spr round 5 (radius: 25) [02:57:57 -242590.946478] FAST spr round 6 (radius: 25) [02:59:30 -242588.374312] FAST spr round 7 (radius: 25) [03:01:02 -242588.374249] Model parameter optimization (eps = 1.000000) [03:01:16 -242577.421616] SLOW spr round 1 (radius: 5) [03:03:23 -242505.339287] SLOW spr round 2 (radius: 5) [03:05:24 -242490.057657] SLOW spr round 3 (radius: 5) [03:07:20 -242487.750569] SLOW spr round 4 (radius: 5) [03:09:14 -242487.750518] SLOW spr round 5 (radius: 10) [03:11:13 -242482.629057] SLOW spr round 6 (radius: 5) [03:13:37 -242472.761859] SLOW spr round 7 (radius: 5) [03:15:46 -242469.439027] SLOW spr round 8 (radius: 5) [03:17:45 -242469.438912] SLOW spr round 9 (radius: 10) [03:19:45 -242469.438902] SLOW spr round 10 (radius: 15) [03:23:05 -242469.438896] SLOW spr round 11 (radius: 20) [03:28:21 -242469.438890] SLOW spr round 12 (radius: 25) [03:35:12 -242469.438885] Model parameter optimization (eps = 0.100000) [03:35:17] ML tree search #4, logLikelihood: -242469.421151 [03:35:17 -791390.114280] Initial branch length optimization [03:35:21 -693260.935935] Model parameter optimization (eps = 10.000000) [03:35:51 -688801.187345] AUTODETECT spr round 1 (radius: 5) [03:37:40 -495165.952668] AUTODETECT spr round 2 (radius: 10) [03:39:39 -348102.633022] AUTODETECT spr round 3 (radius: 15) [03:41:44 -293066.585413] AUTODETECT spr round 4 (radius: 20) [03:44:01 -275179.739072] AUTODETECT spr round 5 (radius: 25) [03:46:53 -272646.630830] SPR radius for FAST iterations: 25 (autodetect) [03:46:53 -272646.630830] Model parameter optimization (eps = 3.000000) [03:47:19 -272424.590511] FAST spr round 1 (radius: 25) [03:49:46 -244028.261301] FAST spr round 2 (radius: 25) [03:51:46 -242834.783315] FAST spr round 3 (radius: 25) [03:53:33 -242738.362814] FAST spr round 4 (radius: 25) [03:55:10 -242681.677233] FAST spr round 5 (radius: 25) [03:56:44 -242677.332934] FAST spr round 6 (radius: 25) [03:58:16 -242677.332868] Model parameter optimization (eps = 1.000000) [03:58:31 -242672.616335] SLOW spr round 1 (radius: 5) [04:00:40 -242633.678402] SLOW spr round 2 (radius: 5) [04:02:42 -242625.211766] SLOW spr round 3 (radius: 5) [04:04:38 -242618.979257] SLOW spr round 4 (radius: 5) [04:06:32 -242618.979156] SLOW spr round 5 (radius: 10) [04:08:32 -242616.337122] SLOW spr round 6 (radius: 5) [04:10:53 -242615.776026] SLOW spr round 7 (radius: 5) [04:13:00 -242615.775839] SLOW spr round 8 (radius: 10) [04:15:02 -242615.775830] SLOW spr round 9 (radius: 15) [04:18:12 -242615.775822] SLOW spr round 10 (radius: 20) [04:23:08 -242615.775814] SLOW spr round 11 (radius: 25) [04:29:31 -242615.775805] Model parameter optimization (eps = 0.100000) [04:29:43] ML tree search #5, logLikelihood: -242615.551361 [04:29:43 -789812.607481] Initial branch length optimization [04:29:45 -690872.761355] Model parameter optimization (eps = 10.000000) [04:30:12 -686607.997418] AUTODETECT spr round 1 (radius: 5) [04:32:00 -493226.540585] AUTODETECT spr round 2 (radius: 10) [04:33:58 -347369.961173] AUTODETECT spr round 3 (radius: 15) [04:36:06 -305028.373742] AUTODETECT spr round 4 (radius: 20) [04:38:34 -279814.609918] AUTODETECT spr round 5 (radius: 25) [04:41:25 -277238.276862] SPR radius for FAST iterations: 25 (autodetect) [04:41:25 -277238.276862] Model parameter optimization (eps = 3.000000) [04:41:46 -276965.377245] FAST spr round 1 (radius: 25) [04:44:15 -244437.866991] FAST spr round 2 (radius: 25) [04:46:16 -242749.870192] FAST spr round 3 (radius: 25) [04:48:09 -242608.125071] FAST spr round 4 (radius: 25) [04:49:52 -242590.360412] FAST spr round 5 (radius: 25) [04:51:28 -242588.176726] FAST spr round 6 (radius: 25) [04:53:01 -242588.176383] Model parameter optimization (eps = 1.000000) [04:53:17 -242579.008089] SLOW spr round 1 (radius: 5) [04:55:25 -242500.380497] SLOW spr round 2 (radius: 5) [04:57:26 -242493.983646] SLOW spr round 3 (radius: 5) [04:59:23 -242493.983507] SLOW spr round 4 (radius: 10) [05:01:24 -242493.983463] SLOW spr round 5 (radius: 15) [05:04:49 -242493.983420] SLOW spr round 6 (radius: 20) [05:09:56 -242493.983377] SLOW spr round 7 (radius: 25) [05:16:33 -242493.983335] Model parameter optimization (eps = 0.100000) [05:16:38] ML tree search #6, logLikelihood: -242493.974521 [05:16:38 -795273.083320] Initial branch length optimization [05:16:41 -694579.583398] Model parameter optimization (eps = 10.000000) [05:17:21 -690234.221819] AUTODETECT spr round 1 (radius: 5) [05:19:11 -489958.974772] AUTODETECT spr round 2 (radius: 10) [05:21:09 -343965.432605] AUTODETECT spr round 3 (radius: 15) [05:23:19 -295676.722623] AUTODETECT spr round 4 (radius: 20) [05:25:45 -277165.164343] AUTODETECT spr round 5 (radius: 25) [05:28:23 -275051.579658] SPR radius for FAST iterations: 25 (autodetect) [05:28:23 -275051.579658] Model parameter optimization (eps = 3.000000) [05:28:45 -274768.912000] FAST spr round 1 (radius: 25) [05:31:16 -243726.100725] FAST spr round 2 (radius: 25) [05:33:17 -242617.303015] FAST spr round 3 (radius: 25) [05:35:06 -242519.296863] FAST spr round 4 (radius: 25) [05:36:45 -242507.786752] FAST spr round 5 (radius: 25) [05:38:20 -242507.786643] Model parameter optimization (eps = 1.000000) [05:38:27 -242506.879128] SLOW spr round 1 (radius: 5) [05:40:37 -242458.237359] SLOW spr round 2 (radius: 5) [05:42:40 -242456.908204] SLOW spr round 3 (radius: 5) [05:44:40 -242456.907874] SLOW spr round 4 (radius: 10) [05:46:41 -242456.907822] SLOW spr round 5 (radius: 15) [05:50:07 -242456.907776] SLOW spr round 6 (radius: 20) [05:55:07 -242456.907731] SLOW spr round 7 (radius: 25) [06:01:32 -242456.907687] Model parameter optimization (eps = 0.100000) [06:01:39] ML tree search #7, logLikelihood: -242456.857705 [06:01:39 -789771.281340] Initial branch length optimization [06:01:41 -693090.712024] Model parameter optimization (eps = 10.000000) [06:02:27 -688565.650934] AUTODETECT spr round 1 (radius: 5) [06:04:15 -490390.278052] AUTODETECT spr round 2 (radius: 10) [06:06:16 -342310.073052] AUTODETECT spr round 3 (radius: 15) [06:08:24 -291410.007649] AUTODETECT spr round 4 (radius: 20) [06:11:01 -275459.508464] AUTODETECT spr round 5 (radius: 25) [06:13:58 -274579.961151] SPR radius for FAST iterations: 25 (autodetect) [06:13:58 -274579.961151] Model parameter optimization (eps = 3.000000) [06:14:18 -274324.776692] FAST spr round 1 (radius: 25) [06:16:46 -243983.232533] FAST spr round 2 (radius: 25) [06:18:44 -242719.394069] FAST spr round 3 (radius: 25) [06:20:33 -242544.886336] FAST spr round 4 (radius: 25) [06:22:11 -242534.056981] FAST spr round 5 (radius: 25) [06:23:46 -242534.056881] Model parameter optimization (eps = 1.000000) [06:24:01 -242524.288515] SLOW spr round 1 (radius: 5) [06:26:09 -242470.496272] SLOW spr round 2 (radius: 5) [06:28:10 -242462.421101] SLOW spr round 3 (radius: 5) [06:30:08 -242461.794180] SLOW spr round 4 (radius: 5) [06:32:04 -242461.794148] SLOW spr round 5 (radius: 10) [06:34:04 -242457.039219] SLOW spr round 6 (radius: 5) [06:36:29 -242450.980977] SLOW spr round 7 (radius: 5) [06:38:37 -242450.277192] SLOW spr round 8 (radius: 5) [06:40:38 -242450.276869] SLOW spr round 9 (radius: 10) [06:42:39 -242450.276831] SLOW spr round 10 (radius: 15) [06:46:03 -242450.276801] SLOW spr round 11 (radius: 20) [06:51:24 -242450.276773] SLOW spr round 12 (radius: 25) [06:58:30 -242450.276746] Model parameter optimization (eps = 0.100000) [06:58:41] ML tree search #8, logLikelihood: -242450.143798 [06:58:41 -794465.888530] Initial branch length optimization [06:58:43 -694556.456138] Model parameter optimization (eps = 10.000000) [06:59:11 -690241.607904] AUTODETECT spr round 1 (radius: 5) [07:01:01 -497120.698178] AUTODETECT spr round 2 (radius: 10) [07:02:58 -351956.286455] AUTODETECT spr round 3 (radius: 15) [07:05:06 -305468.571369] AUTODETECT spr round 4 (radius: 20) [07:07:24 -281529.883867] AUTODETECT spr round 5 (radius: 25) [07:10:24 -277878.119079] SPR radius for FAST iterations: 25 (autodetect) [07:10:24 -277878.119079] Model parameter optimization (eps = 3.000000) [07:10:47 -277588.702850] FAST spr round 1 (radius: 25) [07:13:24 -244043.382274] FAST spr round 2 (radius: 25) [07:15:25 -242633.990278] FAST spr round 3 (radius: 25) [07:17:17 -242549.127374] FAST spr round 4 (radius: 25) [07:18:54 -242544.151945] FAST spr round 5 (radius: 25) [07:20:29 -242542.354120] FAST spr round 6 (radius: 25) [07:22:02 -242542.353322] Model parameter optimization (eps = 1.000000) [07:22:17 -242531.284474] SLOW spr round 1 (radius: 5) [07:24:23 -242477.515365] SLOW spr round 2 (radius: 5) [07:26:22 -242476.447998] SLOW spr round 3 (radius: 5) [07:28:18 -242476.447785] SLOW spr round 4 (radius: 10) [07:30:17 -242476.447772] SLOW spr round 5 (radius: 15) [07:33:42 -242476.447763] SLOW spr round 6 (radius: 20) [07:38:50 -242476.447755] SLOW spr round 7 (radius: 25) [07:45:32 -242476.447747] Model parameter optimization (eps = 0.100000) [07:45:40] ML tree search #9, logLikelihood: -242476.285113 [07:45:40 -788604.963939] Initial branch length optimization [07:45:42 -693469.747294] Model parameter optimization (eps = 10.000000) [07:46:20 -689094.953805] AUTODETECT spr round 1 (radius: 5) [07:48:07 -477966.577683] AUTODETECT spr round 2 (radius: 10) [07:50:05 -334937.901163] AUTODETECT spr round 3 (radius: 15) [07:52:09 -285448.257871] AUTODETECT spr round 4 (radius: 20) [07:54:27 -276665.750054] AUTODETECT spr round 5 (radius: 25) [07:57:02 -272846.273521] SPR radius for FAST iterations: 25 (autodetect) [07:57:02 -272846.273521] Model parameter optimization (eps = 3.000000) [07:57:26 -272529.130634] FAST spr round 1 (radius: 25) [07:59:54 -243964.502954] FAST spr round 2 (radius: 25) [08:01:52 -242766.296105] FAST spr round 3 (radius: 25) [08:03:40 -242653.338486] FAST spr round 4 (radius: 25) [08:05:15 -242650.881563] FAST spr round 5 (radius: 25) [08:06:51 -242628.085197] FAST spr round 6 (radius: 25) [08:08:24 -242628.085104] Model parameter optimization (eps = 1.000000) [08:08:42 -242613.175870] SLOW spr round 1 (radius: 5) [08:10:49 -242501.936662] SLOW spr round 2 (radius: 5) [08:12:52 -242487.566266] SLOW spr round 3 (radius: 5) [08:14:50 -242486.497428] SLOW spr round 4 (radius: 5) [08:16:44 -242486.496936] SLOW spr round 5 (radius: 10) [08:18:43 -242486.496922] SLOW spr round 6 (radius: 15) [08:22:10 -242486.496914] SLOW spr round 7 (radius: 20) [08:27:23 -242486.496908] SLOW spr round 8 (radius: 25) [08:34:10 -242486.496902] Model parameter optimization (eps = 0.100000) [08:34:17] ML tree search #10, logLikelihood: -242486.435674 [08:34:17 -787629.199623] Initial branch length optimization [08:34:20 -689523.581557] Model parameter optimization (eps = 10.000000) [08:34:51 -684993.192150] AUTODETECT spr round 1 (radius: 5) [08:36:40 -497121.252763] AUTODETECT spr round 2 (radius: 10) [08:38:38 -356447.527625] AUTODETECT spr round 3 (radius: 15) [08:40:46 -297081.944841] AUTODETECT spr round 4 (radius: 20) [08:43:17 -279578.391398] AUTODETECT spr round 5 (radius: 25) [08:46:26 -272572.968277] SPR radius for FAST iterations: 25 (autodetect) [08:46:26 -272572.968277] Model parameter optimization (eps = 3.000000) [08:46:47 -272322.767785] FAST spr round 1 (radius: 25) [08:49:12 -244656.836981] FAST spr round 2 (radius: 25) [08:51:10 -242688.159469] FAST spr round 3 (radius: 25) [08:53:00 -242560.540995] FAST spr round 4 (radius: 25) [08:54:38 -242545.425080] FAST spr round 5 (radius: 25) [08:56:12 -242541.650352] FAST spr round 6 (radius: 25) [08:57:43 -242541.650231] Model parameter optimization (eps = 1.000000) [08:57:56 -242537.195399] SLOW spr round 1 (radius: 5) [09:00:01 -242493.104646] SLOW spr round 2 (radius: 5) [09:02:02 -242480.835369] SLOW spr round 3 (radius: 5) [09:03:56 -242480.835178] SLOW spr round 4 (radius: 10) [09:05:55 -242480.583193] SLOW spr round 5 (radius: 5) [09:08:20 -242457.484485] SLOW spr round 6 (radius: 5) [09:10:28 -242456.596013] SLOW spr round 7 (radius: 5) [09:12:28 -242456.595360] SLOW spr round 8 (radius: 10) [09:14:28 -242456.595334] SLOW spr round 9 (radius: 15) [09:17:43 -242456.595316] SLOW spr round 10 (radius: 20) [09:22:35 -242456.503054] SLOW spr round 11 (radius: 25) [09:28:51 -242456.502858] Model parameter optimization (eps = 0.100000) [09:28:58] ML tree search #11, logLikelihood: -242456.336344 [09:28:58 -791866.239843] Initial branch length optimization [09:29:00 -693117.301568] Model parameter optimization (eps = 10.000000) [09:29:40 -688746.141985] AUTODETECT spr round 1 (radius: 5) [09:31:28 -500101.879990] AUTODETECT spr round 2 (radius: 10) [09:33:25 -350842.010733] AUTODETECT spr round 3 (radius: 15) [09:35:30 -300641.644819] AUTODETECT spr round 4 (radius: 20) [09:37:58 -278399.503739] AUTODETECT spr round 5 (radius: 25) [09:40:31 -275828.479178] SPR radius for FAST iterations: 25 (autodetect) [09:40:31 -275828.479178] Model parameter optimization (eps = 3.000000) [09:40:58 -275537.744345] FAST spr round 1 (radius: 25) [09:43:29 -243999.257187] FAST spr round 2 (radius: 25) [09:45:27 -242624.102617] FAST spr round 3 (radius: 25) [09:47:12 -242563.308088] FAST spr round 4 (radius: 25) [09:48:48 -242559.066898] FAST spr round 5 (radius: 25) [09:50:21 -242559.066830] Model parameter optimization (eps = 1.000000) [09:50:34 -242552.254323] SLOW spr round 1 (radius: 5) [09:52:45 -242482.148199] SLOW spr round 2 (radius: 5) [09:54:46 -242470.041341] SLOW spr round 3 (radius: 5) [09:56:41 -242470.041280] SLOW spr round 4 (radius: 10) [09:58:38 -242470.041235] SLOW spr round 5 (radius: 15) [10:01:51 -242470.041189] SLOW spr round 6 (radius: 20) [10:06:39 -242470.041144] SLOW spr round 7 (radius: 25) [10:12:55 -242470.041099] Model parameter optimization (eps = 0.100000) [10:12:59] ML tree search #12, logLikelihood: -242470.034231 [10:12:59 -795167.639659] Initial branch length optimization [10:13:03 -696118.810312] Model parameter optimization (eps = 10.000000) [10:13:32 -691789.408409] AUTODETECT spr round 1 (radius: 5) [10:15:19 -489505.102320] AUTODETECT spr round 2 (radius: 10) [10:17:16 -346545.786921] AUTODETECT spr round 3 (radius: 15) [10:19:31 -294892.002865] AUTODETECT spr round 4 (radius: 20) [10:22:02 -274866.317479] AUTODETECT spr round 5 (radius: 25) [10:25:06 -272227.308155] SPR radius for FAST iterations: 25 (autodetect) [10:25:06 -272227.308155] Model parameter optimization (eps = 3.000000) [10:25:30 -271931.343802] FAST spr round 1 (radius: 25) [10:28:00 -243981.108807] FAST spr round 2 (radius: 25) [10:29:56 -242639.351754] FAST spr round 3 (radius: 25) [10:31:40 -242587.872735] FAST spr round 4 (radius: 25) [10:33:16 -242584.945239] FAST spr round 5 (radius: 25) [10:34:49 -242584.944433] Model parameter optimization (eps = 1.000000) [10:35:06 -242579.588447] SLOW spr round 1 (radius: 5) [10:37:16 -242498.690783] SLOW spr round 2 (radius: 5) [10:39:19 -242481.095215] SLOW spr round 3 (radius: 5) [10:41:17 -242477.356839] SLOW spr round 4 (radius: 5) [10:43:13 -242477.131705] SLOW spr round 5 (radius: 5) [10:45:09 -242477.131612] SLOW spr round 6 (radius: 10) [10:47:20 -242466.954565] SLOW spr round 7 (radius: 5) [10:49:44 -242462.512030] SLOW spr round 8 (radius: 5) [10:51:53 -242460.138096] SLOW spr round 9 (radius: 5) [10:53:52 -242460.138026] SLOW spr round 10 (radius: 10) [10:55:53 -242460.138000] SLOW spr round 11 (radius: 15) [10:59:13 -242460.137974] SLOW spr round 12 (radius: 20) [11:04:20 -242459.627583] SLOW spr round 13 (radius: 5) [11:06:46 -242459.238089] SLOW spr round 14 (radius: 5) [11:08:56 -242459.237895] SLOW spr round 15 (radius: 10) [11:11:01 -242459.237865] SLOW spr round 16 (radius: 15) [11:14:15 -242459.237839] SLOW spr round 17 (radius: 20) [11:19:27 -242459.237813] SLOW spr round 18 (radius: 25) [11:26:05 -242459.237787] Model parameter optimization (eps = 0.100000) [11:26:12] ML tree search #13, logLikelihood: -242458.990384 [11:26:12 -787982.689102] Initial branch length optimization [11:26:15 -690873.474098] Model parameter optimization (eps = 10.000000) [11:26:46 -686512.047521] AUTODETECT spr round 1 (radius: 5) [11:28:34 -488199.227525] AUTODETECT spr round 2 (radius: 10) [11:30:30 -355763.167491] AUTODETECT spr round 3 (radius: 15) [11:32:40 -296435.658518] AUTODETECT spr round 4 (radius: 20) [11:35:04 -277055.100729] AUTODETECT spr round 5 (radius: 25) [11:37:43 -274223.125935] SPR radius for FAST iterations: 25 (autodetect) [11:37:43 -274223.125935] Model parameter optimization (eps = 3.000000) [11:38:07 -273950.029339] FAST spr round 1 (radius: 25) [11:40:33 -244379.166235] FAST spr round 2 (radius: 25) [11:42:27 -242856.149570] FAST spr round 3 (radius: 25) [11:44:13 -242693.530977] FAST spr round 4 (radius: 25) [11:45:51 -242589.011260] FAST spr round 5 (radius: 25) [11:47:24 -242589.011125] Model parameter optimization (eps = 1.000000) [11:47:41 -242584.208960] SLOW spr round 1 (radius: 5) [11:49:46 -242522.608576] SLOW spr round 2 (radius: 5) [11:51:47 -242517.078111] SLOW spr round 3 (radius: 5) [11:53:46 -242491.900742] SLOW spr round 4 (radius: 5) [11:55:39 -242490.637877] SLOW spr round 5 (radius: 5) [11:57:32 -242490.637621] SLOW spr round 6 (radius: 10) [11:59:30 -242490.637469] SLOW spr round 7 (radius: 15) [12:02:43 -242490.637321] SLOW spr round 8 (radius: 20) [12:07:25 -242488.318910] SLOW spr round 9 (radius: 5) [12:09:50 -242488.317831] SLOW spr round 10 (radius: 10) [12:12:05 -242488.317641] SLOW spr round 11 (radius: 15) [12:15:02 -242488.317490] SLOW spr round 12 (radius: 20) [12:19:59 -242488.317341] SLOW spr round 13 (radius: 25) [12:26:19 -242488.317194] Model parameter optimization (eps = 0.100000) [12:26:30] ML tree search #14, logLikelihood: -242488.171109 [12:26:30 -793936.794223] Initial branch length optimization [12:26:33 -694966.719767] Model parameter optimization (eps = 10.000000) [12:27:00 -690562.686155] AUTODETECT spr round 1 (radius: 5) [12:28:47 -496429.623148] AUTODETECT spr round 2 (radius: 10) [12:30:45 -345418.957868] AUTODETECT spr round 3 (radius: 15) [12:32:53 -300473.700737] AUTODETECT spr round 4 (radius: 20) [12:35:26 -277108.245632] AUTODETECT spr round 5 (radius: 25) [12:38:14 -275232.657645] SPR radius for FAST iterations: 25 (autodetect) [12:38:14 -275232.657645] Model parameter optimization (eps = 3.000000) [12:38:40 -274909.188532] FAST spr round 1 (radius: 25) [12:41:07 -243788.771808] FAST spr round 2 (radius: 25) [12:43:07 -242619.291363] FAST spr round 3 (radius: 25) [12:44:55 -242548.726483] FAST spr round 4 (radius: 25) [12:46:30 -242548.725442] Model parameter optimization (eps = 1.000000) [12:46:39 -242546.481604] SLOW spr round 1 (radius: 5) [12:48:50 -242481.142731] SLOW spr round 2 (radius: 5) [12:50:52 -242470.618560] SLOW spr round 3 (radius: 5) [12:52:48 -242469.619580] SLOW spr round 4 (radius: 5) [12:54:43 -242469.618953] SLOW spr round 5 (radius: 10) [12:56:42 -242467.924366] SLOW spr round 6 (radius: 5) [12:59:05 -242462.526629] SLOW spr round 7 (radius: 5) [13:01:13 -242459.837646] SLOW spr round 8 (radius: 5) [13:03:13 -242459.837602] SLOW spr round 9 (radius: 10) [13:05:12 -242459.837577] SLOW spr round 10 (radius: 15) [13:08:29 -242459.837552] SLOW spr round 11 (radius: 20) [13:13:30 -242459.837528] SLOW spr round 12 (radius: 25) [13:19:58 -242459.837503] Model parameter optimization (eps = 0.100000) [13:20:05] ML tree search #15, logLikelihood: -242459.776765 [13:20:05 -790614.605071] Initial branch length optimization [13:20:08 -695492.690089] Model parameter optimization (eps = 10.000000) [13:20:33 -691067.963334] AUTODETECT spr round 1 (radius: 5) [13:22:22 -491310.842903] AUTODETECT spr round 2 (radius: 10) [13:24:18 -344908.524265] AUTODETECT spr round 3 (radius: 15) [13:26:30 -298342.792406] AUTODETECT spr round 4 (radius: 20) [13:29:13 -278352.030309] AUTODETECT spr round 5 (radius: 25) [13:32:28 -277022.280790] SPR radius for FAST iterations: 25 (autodetect) [13:32:28 -277022.280790] Model parameter optimization (eps = 3.000000) [13:32:49 -276723.090961] FAST spr round 1 (radius: 25) [13:35:23 -244040.508686] FAST spr round 2 (radius: 25) [13:37:24 -242718.685881] FAST spr round 3 (radius: 25) [13:39:11 -242603.106802] FAST spr round 4 (radius: 25) [13:40:52 -242551.286729] FAST spr round 5 (radius: 25) [13:42:26 -242535.710306] FAST spr round 6 (radius: 25) [13:43:58 -242535.710140] Model parameter optimization (eps = 1.000000) [13:44:12 -242524.704183] SLOW spr round 1 (radius: 5) [13:46:18 -242471.614766] SLOW spr round 2 (radius: 5) [13:48:19 -242467.170359] SLOW spr round 3 (radius: 5) [13:50:16 -242467.169158] SLOW spr round 4 (radius: 10) [13:52:14 -242467.169040] SLOW spr round 5 (radius: 15) [13:55:37 -242467.169001] SLOW spr round 6 (radius: 20) [14:00:37 -242467.168974] SLOW spr round 7 (radius: 25) [14:07:09 -242467.168948] Model parameter optimization (eps = 0.100000) [14:07:14] ML tree search #16, logLikelihood: -242467.135264 [14:07:14 -792284.983006] Initial branch length optimization [14:07:16 -693194.854879] Model parameter optimization (eps = 10.000000) [14:07:50 -689088.919999] AUTODETECT spr round 1 (radius: 5) [14:09:39 -485500.824622] AUTODETECT spr round 2 (radius: 10) [14:11:38 -337345.122707] AUTODETECT spr round 3 (radius: 15) [14:13:45 -287793.247725] AUTODETECT spr round 4 (radius: 20) [14:16:13 -275016.357345] AUTODETECT spr round 5 (radius: 25) [14:19:00 -270314.861508] SPR radius for FAST iterations: 25 (autodetect) [14:19:00 -270314.861508] Model parameter optimization (eps = 3.000000) [14:19:20 -270058.609198] FAST spr round 1 (radius: 25) [14:21:44 -243609.432616] FAST spr round 2 (radius: 25) [14:23:42 -242557.018965] FAST spr round 3 (radius: 25) [14:25:30 -242514.857992] FAST spr round 4 (radius: 25) [14:27:04 -242508.523461] FAST spr round 5 (radius: 25) [14:28:37 -242508.523113] Model parameter optimization (eps = 1.000000) [14:28:52 -242500.097856] SLOW spr round 1 (radius: 5) [14:30:58 -242449.941041] SLOW spr round 2 (radius: 5) [14:32:58 -242443.884356] SLOW spr round 3 (radius: 5) [14:34:55 -242443.804588] SLOW spr round 4 (radius: 10) [14:36:52 -242443.803984] SLOW spr round 5 (radius: 15) [14:40:09 -242443.803912] SLOW spr round 6 (radius: 20) [14:45:01 -242443.803850] SLOW spr round 7 (radius: 25) [14:51:17 -242443.803789] Model parameter optimization (eps = 0.100000) [14:51:23] ML tree search #17, logLikelihood: -242443.769552 [14:51:23 -793535.830280] Initial branch length optimization [14:51:25 -694379.730400] Model parameter optimization (eps = 10.000000) [14:51:53 -690298.347636] AUTODETECT spr round 1 (radius: 5) [14:53:41 -487480.354799] AUTODETECT spr round 2 (radius: 10) [14:55:40 -334801.248657] AUTODETECT spr round 3 (radius: 15) [14:57:53 -285712.008626] AUTODETECT spr round 4 (radius: 20) [15:00:14 -275426.789490] AUTODETECT spr round 5 (radius: 25) [15:03:04 -273071.893066] SPR radius for FAST iterations: 25 (autodetect) [15:03:04 -273071.893066] Model parameter optimization (eps = 3.000000) [15:03:27 -272808.416001] FAST spr round 1 (radius: 25) [15:05:48 -243654.139895] FAST spr round 2 (radius: 25) [15:07:43 -242608.146332] FAST spr round 3 (radius: 25) [15:09:32 -242562.036606] FAST spr round 4 (radius: 25) [15:11:08 -242556.596431] FAST spr round 5 (radius: 25) [15:12:41 -242556.596401] Model parameter optimization (eps = 1.000000) [15:13:04 -242539.112426] SLOW spr round 1 (radius: 5) [15:15:12 -242491.758027] SLOW spr round 2 (radius: 5) [15:17:15 -242481.504616] SLOW spr round 3 (radius: 5) [15:19:10 -242481.504371] SLOW spr round 4 (radius: 10) [15:21:08 -242481.504358] SLOW spr round 5 (radius: 15) [15:24:28 -242481.504350] SLOW spr round 6 (radius: 20) [15:29:25 -242481.504341] SLOW spr round 7 (radius: 25) [15:35:46 -242481.504333] Model parameter optimization (eps = 0.100000) [15:35:52] ML tree search #18, logLikelihood: -242481.410504 [15:35:52 -796516.025942] Initial branch length optimization [15:35:54 -695971.985785] Model parameter optimization (eps = 10.000000) [15:36:30 -691639.516665] AUTODETECT spr round 1 (radius: 5) [15:38:19 -490977.099686] AUTODETECT spr round 2 (radius: 10) [15:40:13 -356722.331514] AUTODETECT spr round 3 (radius: 15) [15:42:21 -293554.741483] AUTODETECT spr round 4 (radius: 20) [15:44:41 -283750.047528] AUTODETECT spr round 5 (radius: 25) [15:47:27 -276304.194667] SPR radius for FAST iterations: 25 (autodetect) [15:47:27 -276304.194667] Model parameter optimization (eps = 3.000000) [15:47:48 -276064.129758] FAST spr round 1 (radius: 25) [15:50:13 -243954.005491] FAST spr round 2 (radius: 25) [15:52:13 -242652.266284] FAST spr round 3 (radius: 25) [15:53:59 -242562.878441] FAST spr round 4 (radius: 25) [15:55:35 -242551.704722] FAST spr round 5 (radius: 25) [15:57:07 -242550.466893] FAST spr round 6 (radius: 25) [15:58:38 -242550.466056] Model parameter optimization (eps = 1.000000) [15:58:53 -242543.813786] SLOW spr round 1 (radius: 5) [16:01:01 -242488.070750] SLOW spr round 2 (radius: 5) [16:03:01 -242477.945304] SLOW spr round 3 (radius: 5) [16:04:56 -242474.039048] SLOW spr round 4 (radius: 5) [16:06:49 -242474.037903] SLOW spr round 5 (radius: 10) [16:08:46 -242474.037720] SLOW spr round 6 (radius: 15) [16:12:03 -242474.037578] SLOW spr round 7 (radius: 20) [16:16:52 -242474.037437] SLOW spr round 8 (radius: 25) [16:23:10 -242474.037296] Model parameter optimization (eps = 0.100000) [16:23:17] ML tree search #19, logLikelihood: -242474.019527 [16:23:17 -788219.420619] Initial branch length optimization [16:23:19 -692088.199691] Model parameter optimization (eps = 10.000000) [16:24:02 -687689.948253] AUTODETECT spr round 1 (radius: 5) [16:25:49 -483044.492017] AUTODETECT spr round 2 (radius: 10) [16:27:45 -347182.454766] AUTODETECT spr round 3 (radius: 15) [16:29:45 -309399.668959] AUTODETECT spr round 4 (radius: 20) [16:32:15 -280810.535825] AUTODETECT spr round 5 (radius: 25) [16:35:04 -276120.129505] SPR radius for FAST iterations: 25 (autodetect) [16:35:04 -276120.129505] Model parameter optimization (eps = 3.000000) [16:35:24 -275867.924616] FAST spr round 1 (radius: 25) [16:37:46 -244267.897336] FAST spr round 2 (radius: 25) [16:39:44 -242697.167856] FAST spr round 3 (radius: 25) [16:41:32 -242606.323685] FAST spr round 4 (radius: 25) [16:43:16 -242572.748288] FAST spr round 5 (radius: 25) [16:44:57 -242532.330246] FAST spr round 6 (radius: 25) [16:46:29 -242529.129466] FAST spr round 7 (radius: 25) [16:48:00 -242529.129399] Model parameter optimization (eps = 1.000000) [16:48:14 -242519.308654] SLOW spr round 1 (radius: 5) [16:50:17 -242474.429359] SLOW spr round 2 (radius: 5) [16:52:16 -242472.577822] SLOW spr round 3 (radius: 5) [16:54:11 -242472.577697] SLOW spr round 4 (radius: 10) [16:56:08 -242472.577640] SLOW spr round 5 (radius: 15) [16:59:33 -242472.577586] SLOW spr round 6 (radius: 20) [17:04:45 -242472.577532] SLOW spr round 7 (radius: 25) [17:11:27 -242472.577479] Model parameter optimization (eps = 0.100000) [17:11:32] ML tree search #20, logLikelihood: -242472.557888 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.120293,0.610258) (0.067255,0.662732) (0.404040,0.826373) (0.408412,1.342103) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -242443.769552 AIC score: 488897.539104 / AICc score: 8532957.539104 / BIC score: 497202.324102 Free parameters (model + branch lengths): 2005 WARNING: Number of free parameters (K=2005) is larger than alignment size (n=465). This might lead to overfitting and compromise tree inference results! WARNING: Best ML tree contains 36 near-zero branches! Best ML tree with collapsed near-zero branches saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03.raxml.bestTreeCollapsed Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NI03/3_mltree/A6NI03.raxml.log Analysis started: 01-Jul-2021 17:06:28 / finished: 02-Jul-2021 10:18:00 Elapsed time: 61892.571 seconds Consumed energy: 4363.980 Wh (= 22 km in an electric car, or 109 km with an e-scooter!)