RAxML-NG v. 1.0.2 released on 22.02.2021 by The Exelixis Lab. Developed by: Alexey M. Kozlov and Alexandros Stamatakis. Contributors: Diego Darriba, Tomas Flouri, Benoit Morel, Sarah Lutteropp, Ben Bettisworth. Latest version: https://github.com/amkozlov/raxml-ng Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!forum/raxml System: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 40 cores, 376 GB RAM RAxML-NG was called at 05-Jul-2021 19:54:15 as follows: raxml-ng --msa /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/2_msa/A6NER3_trimmed_msa.fasta --data-type AA --model LG4X --prefix /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/3_mltree/A6NER3 --seed 2 --threads 2 --tree rand{20} pars{20} Analysis options: run mode: ML tree search start tree(s): random (20) random seed: 2 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (2 threads), thread pinning: OFF [00:00:00] Reading alignment from file: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/2_msa/A6NER3_trimmed_msa.fasta [00:00:00] Loaded alignment with 146 taxa and 118 sites WARNING: Sequences tr_H2QYL9_H2QYL9_PANTR_9598 and tr_A0A2R9ABQ3_A0A2R9ABQ3_PANPA_9597 are exactly identical! WARNING: Sequences tr_H2QYM7_H2QYM7_PANTR_9598 and tr_A0A2R8ZDX8_A0A2R8ZDX8_PANPA_9597 are exactly identical! WARNING: Sequences tr_H2R2C5_H2R2C5_PANTR_9598 and tr_A0A2R9A2R7_A0A2R9A2R7_PANPA_9597 are exactly identical! WARNING: Sequences sp_O76087_GAGE7_HUMAN_9606 and sp_P0CL80_GG12F_HUMAN_9606 are exactly identical! WARNING: Sequences sp_O76087_GAGE7_HUMAN_9606 and sp_P0CL81_GG12G_HUMAN_9606 are exactly identical! WARNING: Sequences sp_O76087_GAGE7_HUMAN_9606 and sp_P0CL82_GG12I_HUMAN_9606 are exactly identical! WARNING: Sequences tr_A0A1D5Q0R5_A0A1D5Q0R5_MACMU_9544 and tr_G7Q2S5_G7Q2S5_MACFA_9541 are exactly identical! WARNING: Duplicate sequences found: 7 NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/3_mltree/A6NER3.raxml.reduced.phy Alignment comprises 1 partitions and 118 patterns Partition 0: noname Model: LG4X+R4 Alignment sites / patterns: 118 / 118 Gaps: 10.48 % Invariant sites: 0.00 % NOTE: Binary MSA file created: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/3_mltree/A6NER3.raxml.rba Parallelization scheme autoconfig: 2 worker(s) x 1 thread(s) Parallel reduction/worker buffer size: 1 KB / 0 KB [00:00:00] Generating 20 random starting tree(s) with 146 taxa [00:00:00] Data distribution: max. partitions/sites/weight per thread: 1 / 118 / 9440 [00:00:00] Data distribution: max. searches per worker: 10 Starting ML tree search with 20 distinct starting trees [00:00:00 -25857.379728] Initial branch length optimization [00:00:00 -22204.471986] Model parameter optimization (eps = 10.000000) [00:00:06 -21767.923210] AUTODETECT spr round 1 (radius: 5) [00:00:10 -13635.108734] AUTODETECT spr round 2 (radius: 10) [00:00:14 -9633.888020] AUTODETECT spr round 3 (radius: 15) [00:00:19 -9042.892804] AUTODETECT spr round 4 (radius: 20) [00:00:25 -9039.868894] AUTODETECT spr round 5 (radius: 25) [00:00:30 -9039.868600] SPR radius for FAST iterations: 20 (autodetect) [00:00:30 -9039.868600] Model parameter optimization (eps = 3.000000) [00:00:35 -8994.651202] FAST spr round 1 (radius: 20) [00:00:39 -7927.473621] FAST spr round 2 (radius: 20) [00:00:43 -7855.828628] FAST spr round 3 (radius: 20) [00:00:46 -7844.178179] FAST spr round 4 (radius: 20) [00:00:48 -7844.164420] Model parameter optimization (eps = 1.000000) [00:00:50 -7843.399510] SLOW spr round 1 (radius: 5) [00:00:56 -7843.109115] SLOW spr round 2 (radius: 5) [00:01:01 -7843.108942] SLOW spr round 3 (radius: 10) [00:01:07 -7843.108899] SLOW spr round 4 (radius: 15) [00:01:16 -7843.108883] SLOW spr round 5 (radius: 20) [00:01:20] [worker #1] ML tree search #2, logLikelihood: -7850.556948 [00:01:24 -7843.108876] SLOW spr round 6 (radius: 25) [00:01:28 -7843.108874] Model parameter optimization (eps = 0.100000) [00:01:29] [worker #0] ML tree search #1, logLikelihood: -7843.106274 [00:01:29 -26114.705884] Initial branch length optimization [00:01:29 -22261.747674] Model parameter optimization (eps = 10.000000) [00:01:35 -21845.810110] AUTODETECT spr round 1 (radius: 5) [00:01:38 -13489.507396] AUTODETECT spr round 2 (radius: 10) [00:01:43 -9647.156033] AUTODETECT spr round 3 (radius: 15) [00:01:50 -8819.114118] AUTODETECT spr round 4 (radius: 20) [00:01:56 -8819.112809] SPR radius for FAST iterations: 15 (autodetect) [00:01:56 -8819.112809] Model parameter optimization (eps = 3.000000) [00:02:00 -8789.539701] FAST spr round 1 (radius: 15) [00:02:04 -7874.217756] FAST spr round 2 (radius: 15) [00:02:07 -7857.491486] FAST spr round 3 (radius: 15) [00:02:10 -7853.856530] FAST spr round 4 (radius: 15) [00:02:12 -7851.763259] FAST spr round 5 (radius: 15) [00:02:15 -7851.762943] Model parameter optimization (eps = 1.000000) [00:02:17 -7848.256143] SLOW spr round 1 (radius: 5) [00:02:23 -7847.618592] SLOW spr round 2 (radius: 5) [00:02:29 -7847.618026] SLOW spr round 3 (radius: 10) [00:02:34 -7847.618022] SLOW spr round 4 (radius: 15) [00:02:40] [worker #1] ML tree search #4, logLikelihood: -7843.832275 [00:02:44 -7847.618022] SLOW spr round 5 (radius: 20) [00:02:52 -7847.618022] SLOW spr round 6 (radius: 25) [00:02:56 -7847.618022] Model parameter optimization (eps = 0.100000) [00:02:56] [worker #0] ML tree search #3, logLikelihood: -7847.617139 [00:02:56 -26136.479922] Initial branch length optimization [00:02:56 -22361.337453] Model parameter optimization (eps = 10.000000) [00:03:02 -21914.310875] AUTODETECT spr round 1 (radius: 5) [00:03:05 -13165.253305] AUTODETECT spr round 2 (radius: 10) [00:03:10 -9813.977126] AUTODETECT spr round 3 (radius: 15) [00:03:16 -9003.783477] AUTODETECT spr round 4 (radius: 20) [00:03:23 -9003.777340] SPR radius for FAST iterations: 15 (autodetect) [00:03:23 -9003.777340] Model parameter optimization (eps = 3.000000) [00:03:27 -8970.715544] FAST spr round 1 (radius: 15) [00:03:31 -7884.866765] FAST spr round 2 (radius: 15) [00:03:34 -7852.146899] FAST spr round 3 (radius: 15) [00:03:36 -7852.145835] Model parameter optimization (eps = 1.000000) [00:03:38 -7851.479180] SLOW spr round 1 (radius: 5) [00:03:44 -7847.908601] SLOW spr round 2 (radius: 5) [00:03:49 -7847.882065] SLOW spr round 3 (radius: 10) [00:03:55 -7846.139858] SLOW spr round 4 (radius: 5) [00:04:03 -7846.139664] SLOW spr round 5 (radius: 10) [00:04:09 -7846.139663] SLOW spr round 6 (radius: 15) [00:04:18 -7846.139663] SLOW spr round 7 (radius: 20) [00:04:26 -7846.139663] SLOW spr round 8 (radius: 25) [00:04:31 -7846.139663] Model parameter optimization (eps = 0.100000) [00:04:32] [worker #0] ML tree search #5, logLikelihood: -7846.029952 [00:04:32 -26083.363645] Initial branch length optimization [00:04:32 -22087.979639] Model parameter optimization (eps = 10.000000) [00:04:37 -21760.674810] AUTODETECT spr round 1 (radius: 5) [00:04:40 -12593.840712] AUTODETECT spr round 2 (radius: 10) [00:04:44] [worker #1] ML tree search #6, logLikelihood: -7837.234209 [00:04:45 -9015.606117] AUTODETECT spr round 3 (radius: 15) [00:04:52 -8729.381982] AUTODETECT spr round 4 (radius: 20) [00:04:57 -8729.379144] SPR radius for FAST iterations: 15 (autodetect) [00:04:57 -8729.379144] Model parameter optimization (eps = 3.000000) [00:05:02 -8680.133309] FAST spr round 1 (radius: 15) [00:05:06 -7872.536512] FAST spr round 2 (radius: 15) [00:05:10 -7849.204103] FAST spr round 3 (radius: 15) [00:05:12 -7849.203149] Model parameter optimization (eps = 1.000000) [00:05:15 -7846.100724] SLOW spr round 1 (radius: 5) [00:05:21 -7844.585223] SLOW spr round 2 (radius: 5) [00:05:26 -7844.585213] SLOW spr round 3 (radius: 10) [00:05:32 -7844.585213] SLOW spr round 4 (radius: 15) [00:05:41 -7844.585213] SLOW spr round 5 (radius: 20) [00:05:50 -7844.585213] SLOW spr round 6 (radius: 25) [00:05:54 -7844.585213] Model parameter optimization (eps = 0.100000) [00:05:55] [worker #0] ML tree search #7, logLikelihood: -7844.563314 [00:05:55 -26040.358452] Initial branch length optimization [00:05:56 -22117.197667] Model parameter optimization (eps = 10.000000) [00:06:01 -21749.043382] AUTODETECT spr round 1 (radius: 5) [00:06:04 -12539.548039] AUTODETECT spr round 2 (radius: 10) [00:06:08 -9784.565286] AUTODETECT spr round 3 (radius: 15) [00:06:14 -9135.690434] AUTODETECT spr round 4 (radius: 20) [00:06:19 -8949.100085] AUTODETECT spr round 5 (radius: 25) [00:06:24 -8949.099485] SPR radius for FAST iterations: 20 (autodetect) [00:06:24 -8949.099485] Model parameter optimization (eps = 3.000000) [00:06:25] [worker #1] ML tree search #8, logLikelihood: -7841.170081 [00:06:27 -8912.938647] FAST spr round 1 (radius: 20) [00:06:31 -8028.931959] FAST spr round 2 (radius: 20) [00:06:35 -7865.817323] FAST spr round 3 (radius: 20) [00:06:39 -7858.228869] FAST spr round 4 (radius: 20) [00:06:41 -7858.228694] Model parameter optimization (eps = 1.000000) [00:06:43 -7857.685315] SLOW spr round 1 (radius: 5) [00:06:48 -7857.153894] SLOW spr round 2 (radius: 5) [00:06:53 -7857.153892] SLOW spr round 3 (radius: 10) [00:06:59 -7857.153892] SLOW spr round 4 (radius: 15) [00:07:08 -7857.153892] SLOW spr round 5 (radius: 20) [00:07:16 -7857.153892] SLOW spr round 6 (radius: 25) [00:07:21 -7857.153892] Model parameter optimization (eps = 0.100000) [00:07:22] [worker #0] ML tree search #9, logLikelihood: -7857.147749 [00:07:22 -25606.044872] Initial branch length optimization [00:07:22 -21845.892822] Model parameter optimization (eps = 10.000000) [00:07:27 -21400.799609] AUTODETECT spr round 1 (radius: 5) [00:07:30 -13234.873294] AUTODETECT spr round 2 (radius: 10) [00:07:35 -9472.390005] AUTODETECT spr round 3 (radius: 15) [00:07:40 -9245.959299] AUTODETECT spr round 4 (radius: 20) [00:07:45 -9205.946016] AUTODETECT spr round 5 (radius: 25) [00:07:50 -9205.939744] SPR radius for FAST iterations: 20 (autodetect) [00:07:50 -9205.939744] Model parameter optimization (eps = 3.000000) [00:08:02 -9145.903641] FAST spr round 1 (radius: 20) [00:08:06 -7938.770691] FAST spr round 2 (radius: 20) [00:08:08] [worker #1] ML tree search #10, logLikelihood: -7833.114162 [00:08:10 -7856.485517] FAST spr round 3 (radius: 20) [00:08:13 -7844.925408] FAST spr round 4 (radius: 20) [00:08:16 -7844.925243] Model parameter optimization (eps = 1.000000) [00:08:17 -7843.826600] SLOW spr round 1 (radius: 5) [00:08:23 -7843.826511] SLOW spr round 2 (radius: 10) [00:08:29 -7843.826509] SLOW spr round 3 (radius: 15) [00:08:38 -7843.826508] SLOW spr round 4 (radius: 20) [00:08:46 -7843.826507] SLOW spr round 5 (radius: 25) [00:08:50 -7843.826506] Model parameter optimization (eps = 0.100000) [00:08:51] [worker #0] ML tree search #11, logLikelihood: -7843.826498 [00:08:51 -25873.721411] Initial branch length optimization [00:08:51 -22039.693307] Model parameter optimization (eps = 10.000000) [00:08:56 -21536.369721] AUTODETECT spr round 1 (radius: 5) [00:09:00 -12681.423775] AUTODETECT spr round 2 (radius: 10) [00:09:04 -8985.516365] AUTODETECT spr round 3 (radius: 15) [00:09:11 -8568.338006] AUTODETECT spr round 4 (radius: 20) [00:09:18 -8568.331847] SPR radius for FAST iterations: 15 (autodetect) [00:09:18 -8568.331847] Model parameter optimization (eps = 3.000000) [00:09:23 -8529.901435] FAST spr round 1 (radius: 15) [00:09:27 -7860.634383] FAST spr round 2 (radius: 15) [00:09:31 -7843.900968] FAST spr round 3 (radius: 15) [00:09:33 -7842.661956] FAST spr round 4 (radius: 15) [00:09:36 -7842.661796] Model parameter optimization (eps = 1.000000) [00:09:38 -7838.666090] SLOW spr round 1 (radius: 5) [00:09:44 -7837.989830] SLOW spr round 2 (radius: 5) [00:09:49] [worker #1] ML tree search #12, logLikelihood: -7837.243696 [00:09:50 -7837.988883] SLOW spr round 3 (radius: 10) [00:09:55 -7837.988869] SLOW spr round 4 (radius: 15) [00:10:05 -7837.988867] SLOW spr round 5 (radius: 20) [00:10:12 -7837.988866] SLOW spr round 6 (radius: 25) [00:10:17 -7837.988865] Model parameter optimization (eps = 0.100000) [00:10:18] [worker #0] ML tree search #13, logLikelihood: -7837.987937 [00:10:18 -25454.064359] Initial branch length optimization [00:10:18 -21725.279909] Model parameter optimization (eps = 10.000000) [00:10:22 -21372.990558] AUTODETECT spr round 1 (radius: 5) [00:10:25 -12612.564823] AUTODETECT spr round 2 (radius: 10) [00:10:30 -9476.726830] AUTODETECT spr round 3 (radius: 15) [00:10:36 -9060.005964] AUTODETECT spr round 4 (radius: 20) [00:10:42 -9060.004206] SPR radius for FAST iterations: 15 (autodetect) [00:10:42 -9060.004206] Model parameter optimization (eps = 3.000000) [00:10:45 -9020.067737] FAST spr round 1 (radius: 15) [00:10:50 -8031.869581] FAST spr round 2 (radius: 15) [00:10:53 -7850.448335] FAST spr round 3 (radius: 15) [00:10:55 -7850.447724] Model parameter optimization (eps = 1.000000) [00:10:57 -7849.359758] SLOW spr round 1 (radius: 5) [00:11:03 -7847.115336] SLOW spr round 2 (radius: 5) [00:11:08 -7847.115332] SLOW spr round 3 (radius: 10) [00:11:14 -7846.930694] SLOW spr round 4 (radius: 5) [00:11:22 -7846.930694] SLOW spr round 5 (radius: 10) [00:11:25] [worker #1] ML tree search #14, logLikelihood: -7854.858274 [00:11:28 -7846.930694] SLOW spr round 6 (radius: 15) [00:11:37 -7846.930694] SLOW spr round 7 (radius: 20) [00:11:45 -7846.930694] SLOW spr round 8 (radius: 25) [00:11:50 -7846.930694] Model parameter optimization (eps = 0.100000) [00:11:51] [worker #0] ML tree search #15, logLikelihood: -7846.925046 [00:11:51 -26019.222217] Initial branch length optimization [00:11:51 -22100.374609] Model parameter optimization (eps = 10.000000) [00:11:58 -21659.077812] AUTODETECT spr round 1 (radius: 5) [00:12:01 -12639.010053] AUTODETECT spr round 2 (radius: 10) [00:12:06 -9170.831758] AUTODETECT spr round 3 (radius: 15) [00:12:13 -8792.569922] AUTODETECT spr round 4 (radius: 20) [00:12:19 -8792.501632] SPR radius for FAST iterations: 15 (autodetect) [00:12:19 -8792.501632] Model parameter optimization (eps = 3.000000) [00:12:22 -8758.588024] FAST spr round 1 (radius: 15) [00:12:27 -7872.380598] FAST spr round 2 (radius: 15) [00:12:30 -7852.624680] FAST spr round 3 (radius: 15) [00:12:33 -7845.648886] FAST spr round 4 (radius: 15) [00:12:36 -7845.635605] Model parameter optimization (eps = 1.000000) [00:12:38 -7843.575878] SLOW spr round 1 (radius: 5) [00:12:43 -7843.350820] SLOW spr round 2 (radius: 5) [00:12:48 -7843.350817] SLOW spr round 3 (radius: 10) [00:12:50] [worker #1] ML tree search #16, logLikelihood: -7845.651063 [00:12:54 -7843.312919] SLOW spr round 4 (radius: 15) [00:13:03 -7843.312919] SLOW spr round 5 (radius: 20) [00:13:11 -7843.312919] SLOW spr round 6 (radius: 25) [00:13:16 -7843.312919] Model parameter optimization (eps = 0.100000) [00:13:16] [worker #0] ML tree search #17, logLikelihood: -7843.311800 [00:13:16 -25811.589190] Initial branch length optimization [00:13:16 -22472.764329] Model parameter optimization (eps = 10.000000) [00:13:24 -22038.148104] AUTODETECT spr round 1 (radius: 5) [00:13:27 -12296.526573] AUTODETECT spr round 2 (radius: 10) [00:13:32 -8752.793825] AUTODETECT spr round 3 (radius: 15) [00:13:38 -8748.057781] AUTODETECT spr round 4 (radius: 20) [00:13:44 -8748.039614] SPR radius for FAST iterations: 15 (autodetect) [00:13:44 -8748.039614] Model parameter optimization (eps = 3.000000) [00:13:49 -8678.908689] FAST spr round 1 (radius: 15) [00:13:53 -7903.100065] FAST spr round 2 (radius: 15) [00:13:57 -7845.995676] FAST spr round 3 (radius: 15) [00:14:00 -7843.358060] FAST spr round 4 (radius: 15) [00:14:02 -7843.357105] Model parameter optimization (eps = 1.000000) [00:14:05 -7841.456664] SLOW spr round 1 (radius: 5) [00:14:11 -7837.938540] SLOW spr round 2 (radius: 5) [00:14:17 -7833.231961] SLOW spr round 3 (radius: 5) [00:14:22 -7833.231960] SLOW spr round 4 (radius: 10) [00:14:28 -7833.231960] SLOW spr round 5 (radius: 15) [00:14:37 -7833.231960] SLOW spr round 6 (radius: 20) [00:14:45 -7833.231960] SLOW spr round 7 (radius: 25) [00:14:49 -7833.231960] Model parameter optimization (eps = 0.100000) [00:14:50] [worker #0] ML tree search #19, logLikelihood: -7833.117129 [00:14:55] [worker #1] ML tree search #18, logLikelihood: -7848.775323 [00:16:42] [worker #1] ML tree search #20, logLikelihood: -7849.996393 Optimized model parameters: Partition 0: noname Rate heterogeneity: FREE (4 cats, mean), weights&rates: (0.165793,0.574418) (0.017075,17.175192) (0.252607,0.528737) (0.564524,0.846614) Base frequencies (model): M0: 0.147383 0.017579 0.058208 0.017707 0.026331 0.041582 0.017494 0.027859 0.011849 0.076971 0.147823 0.019535 0.037132 0.029940 0.008059 0.088179 0.089653 0.006477 0.032308 0.097931 M1: 0.063139 0.066357 0.011586 0.066571 0.010800 0.009276 0.053984 0.146986 0.034214 0.088822 0.098196 0.032390 0.021263 0.072697 0.016761 0.020711 0.020797 0.025463 0.045615 0.094372 M2: 0.062457 0.066826 0.049332 0.065270 0.006513 0.041231 0.058965 0.080852 0.028024 0.037024 0.075925 0.064131 0.019620 0.028710 0.104579 0.056388 0.062027 0.008241 0.033124 0.050760 M3: 0.106471 0.074171 0.044513 0.096390 0.002148 0.066733 0.158908 0.037625 0.020691 0.014608 0.028797 0.105352 0.007864 0.007477 0.083595 0.055726 0.047711 0.003975 0.010088 0.027159 Substitution rates (model): M 0: 0.295719 0.067388 0.253712 1.029289 0.107964 0.514644 10.868848 0.380498 0.084223 0.086976 0.188789 0.286389 0.155567 1.671061 2.132922 0.529591 0.115551 0.102453 0.916683 0.448317 0.457483 0.576016 1.741924 0.736017 0.704334 5.658311 0.123387 0.221777 93.433377 0.382175 0.235965 6.535048 0.525521 0.303537 0.641259 0.289466 0.102065 2.358429 0.251987 0.216561 0.503084 0.435271 4.873453 0.090748 0.033310 0.746537 0.128905 0.127321 0.904011 0.939733 0.435450 0.046646 0.262076 0.043986 0.189008 0.599450 109.901504 1.070052 5.229858 0.052764 0.021407 0.621146 0.081091 0.205164 5.164456 0.747330 0.308078 0.260889 0.185083 0.080708 0.029955 0.084794 1.862626 0.553477 0.151733 0.230320 0.096955 0.352526 0.590018 0.386853 1.559564 0.606648 0.587531 0.592318 0.885230 4.117654 0.246260 6.508329 0.054187 0.195703 1.669092 0.810168 0.066081 2.437439 0.165666 0.106333 0.093417 0.035149 0.072549 1.202023 1.634845 0.060194 0.069359 2.448827 0.232297 0.064822 3.537387 0.435384 0.290413 0.280695 0.105999 0.206603 0.404968 0.048984 0.069963 0.256662 0.228519 0.241077 4.320442 3.656545 0.290216 0.307466 0.096556 0.306067 0.204296 0.504221 1.991533 0.655465 6.799829 11.291065 0.961142 0.448965 6.227274 20.304886 0.205944 1.495537 0.091940 1.994320 0.754940 0.170343 0.050315 0.372166 0.206332 0.097050 5.381403 0.122332 3.256485 2.261319 0.848067 0.064441 0.102493 0.459041 0.133091 0.561215 0.457430 0.163849 5.260446 0.360946 0.389413 0.033291 0.115301 0.112593 1.559944 0.426508 0.132547 0.498634 0.559069 0.264728 0.693307 0.438856 0.306683 0.109129 18.392863 66.647302 0.400021 4.586081 2.099355 0.411347 0.476350 0.584622 3.634276 0.101797 0.148995 0.089177 0.034710 0.063603 0.755865 20.561407 0.133790 0.154902 M 1: 0.066142 0.590377 0.069930 9.850951 1.101363 0.150375 0.568586 0.051668 0.127170 0.292429 0.071458 1.218562 0.075144 7.169085 30.139501 13.461692 0.021372 0.045779 4.270235 0.468325 0.013688 0.302287 1.353957 0.028386 0.037750 0.262130 0.016923 0.064289 0.855973 0.079621 0.011169 0.161937 0.276530 0.161053 0.081472 0.036742 0.030342 2.851667 3.932151 8.159169 0.219934 0.421974 2.468752 0.344765 0.210724 1.172204 0.763553 0.082464 0.726566 11.149790 4.782635 0.058046 0.498072 0.258487 0.146882 0.249672 0.560142 0.046719 0.106259 0.003656 0.004200 0.014189 0.009876 0.002656 0.040244 0.267322 0.053740 0.006597 0.027639 0.012745 0.582670 0.005035 0.275844 0.098208 0.445038 1.217010 0.033969 1.988516 0.681161 0.825960 18.762977 11.949233 0.286794 0.534219 4.336817 3.054085 0.129551 4.210126 0.165753 1.088704 1.889645 3.344809 0.111063 2.067758 3.547017 2.466507 0.188236 0.203493 0.281953 0.037250 0.029788 0.008541 0.014768 0.125869 0.056702 0.004186 0.110993 0.201148 0.139705 0.009201 0.012095 0.043812 0.013513 0.002533 0.005848 0.031390 0.021612 0.004854 0.129497 0.976631 0.053397 0.019475 0.004964 0.015539 0.031779 0.064558 0.065585 0.079927 0.095591 0.196886 0.408834 0.126088 0.037226 0.452302 0.016212 7.278994 0.029917 7.918203 0.450964 0.169797 0.104288 1.578530 0.015909 0.094365 16.179952 0.042762 14.799537 1.506485 0.637893 0.123793 0.641351 0.154810 0.140750 3.416059 0.259400 0.009457 0.090576 0.292108 0.297913 0.017172 0.021976 0.032578 1.375871 0.457399 0.598048 4.418398 0.239749 0.168432 2.950318 0.143327 0.328689 0.125011 0.562720 1.414883 0.227807 3.478333 2.984862 0.061299 0.077470 1.050562 13.974326 0.154326 0.224675 0.112000 0.060703 0.123480 5.294490 0.447011 0.033381 0.045528 M 2: 0.733336 0.558955 0.503360 4.149599 1.415369 1.367574 1.263002 0.994098 0.517204 0.775054 0.763094 1.890137 0.540460 0.200122 4.972745 1.825593 0.450842 0.526135 3.839269 0.597671 0.058964 2.863355 2.872594 0.258365 0.366868 2.578946 0.358350 0.672023 5.349861 0.691594 0.063347 0.032875 0.821562 0.580847 0.661866 0.265730 0.395134 5.581680 1.279881 1.335650 0.397108 1.840061 5.739035 0.284730 0.109781 1.612642 0.466979 0.141582 0.019509 4.670980 1.967383 0.088064 0.581928 0.145401 0.225860 0.434096 2.292917 1.024707 0.821921 0.027824 0.021443 0.088850 0.060820 0.018288 0.042687 1.199607 0.420710 0.037642 0.141233 0.090101 1.043232 0.209978 0.823594 3.039380 1.463390 1.983693 0.397640 2.831098 4.102068 0.059723 5.901348 2.034980 2.600668 5.413080 4.193725 4.534772 0.377181 4.877840 0.370939 1.298542 3.509873 2.646440 0.087872 0.072299 1.139018 0.864479 0.390688 0.322761 0.625409 0.496780 0.532488 0.232460 0.169219 0.755219 0.379926 0.020447 0.023282 0.503875 0.577513 0.109318 0.153776 0.696533 0.398817 0.008940 0.043707 0.436013 0.087640 0.064863 0.036426 1.673207 0.124068 0.218118 0.039217 0.104335 0.349195 0.838324 0.888693 0.488389 1.385133 0.050226 0.962470 0.502294 1.065585 8.351808 0.377304 5.102837 0.561690 7.010411 3.054968 0.039318 0.204155 2.653232 0.564368 0.854294 15.559906 0.401070 8.929538 5.525874 0.067505 0.273372 0.437116 1.927515 0.940458 2.508169 1.357738 0.043394 0.023126 0.567639 1.048288 0.120994 0.180650 0.449074 3.135353 0.012695 0.570771 2.319555 1.856122 0.975427 3.404087 0.015631 0.458799 0.151684 4.154750 11.429924 1.457957 0.233109 0.077004 0.011074 0.026268 0.052132 8.113282 0.377578 0.429221 0.260296 0.222293 0.273138 2.903836 4.731579 0.564762 0.681215 M 3: 0.658412 0.566269 0.854111 0.884454 1.309554 1.272639 1.874713 0.552007 0.227683 0.581512 0.695190 0.967985 0.344015 0.978992 3.427163 2.333253 0.154701 0.221089 2.088785 0.540749 0.058015 5.851132 2.294145 0.182966 0.684164 3.192521 0.528161 1.128882 3.010922 1.012866 0.227296 0.156635 0.878405 0.802754 0.830884 0.431617 0.456530 3.060574 1.279257 1.438430 0.431464 2.075952 4.840271 0.644656 0.266076 2.084975 0.720060 0.291854 0.028961 4.071574 2.258357 0.073037 1.238426 0.199728 0.160296 0.482619 2.992763 1.296206 0.841829 0.031467 0.048542 0.132774 0.133055 0.056045 0.209188 0.925172 0.360522 0.094591 0.313945 0.118104 0.992259 0.086318 2.149634 5.103188 3.775817 3.954021 0.190734 1.776095 4.495841 0.264277 7.063879 2.221150 3.017954 8.558815 4.310199 2.130054 0.571406 4.137385 0.437589 2.071689 2.498630 1.763546 0.116381 0.296578 1.033710 1.283423 0.312579 0.305772 0.681277 0.507160 0.351381 0.189152 0.217780 0.767361 0.278392 0.092075 0.177263 0.451893 0.653836 0.074620 0.181992 0.752277 0.679853 0.025780 0.082005 0.326441 0.343977 0.195877 0.217424 3.057583 0.377558 0.401252 0.072258 0.241015 0.665865 1.266791 0.680174 0.717301 4.001286 0.362942 1.189259 0.964545 1.350568 12.869737 0.531100 8.904999 0.652629 10.091413 2.671718 0.086367 0.359932 4.797423 0.336801 1.021885 23.029406 0.440178 14.013035 5.069337 0.539010 0.742569 0.780580 1.331875 1.531589 4.414850 1.082703 0.091278 0.172734 0.693405 1.422571 0.068958 0.163829 0.481711 4.643214 0.121821 0.584083 4.216178 1.677263 1.575754 5.046403 0.161015 1.531223 0.599244 5.832025 33.873091 1.914768 1.287474 0.444362 0.076328 0.079916 0.466823 5.231362 0.548763 0.831890 0.382271 0.208791 0.307846 3.717971 5.910440 0.282540 0.964421 Final LogLikelihood: -7833.114162 AIC score: 16256.228324 / AICc score: 190896.228324 / BIC score: 17073.580289 Free parameters (model + branch lengths): 295 WARNING: Number of free parameters (K=295) is larger than alignment size (n=118). This might lead to overfitting and compromise tree inference results! Best ML tree saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/3_mltree/A6NER3.raxml.bestTree All ML trees saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/3_mltree/A6NER3.raxml.mlTrees Optimized model saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/3_mltree/A6NER3.raxml.bestModel Execution log saved to: /truba/home/emrah/WORKFOLDER/PROD/300621_run/phylogeny-snakemake/results/A6NER3/3_mltree/A6NER3.raxml.log Analysis started: 05-Jul-2021 19:54:15 / finished: 05-Jul-2021 20:10:57 Elapsed time: 1002.467 seconds Consumed energy: 84.053 Wh